The moduli space of cubic fourfolds via the period map
Annals of mathematics, Tome 172 (2010) no. 1, pp. 673-711.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We characterize the image of the period map for cubic fourfolds with at worst simple singularities as the complement of an arrangement of hyperplanes in the period space. It follows then that the geometric invariant theory (GIT) compactification of the moduli space of cubic fourfolds is isomorphic to the Looijenga compactification associated to this arrangement. This paper builds on and is a natural continuation of our previous work on the GIT compactification of the moduli space of cubic fourfolds.
DOI : 10.4007/annals.2010.172.673

Radu Laza 1

1 Department of Mathematics, SUNY at Stony Brook, Stony Brook, NY 11794, United States
@article{10_4007_annals_2010_172_673,
     author = {Radu Laza},
     title = {The moduli space of cubic fourfolds  via the period map},
     journal = {Annals of mathematics},
     pages = {673--711},
     publisher = {mathdoc},
     volume = {172},
     number = {1},
     year = {2010},
     doi = {10.4007/annals.2010.172.673},
     mrnumber = {2680429
},
     zbl = {1201.14026},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.673/}
}
TY  - JOUR
AU  - Radu Laza
TI  - The moduli space of cubic fourfolds  via the period map
JO  - Annals of mathematics
PY  - 2010
SP  - 673
EP  - 711
VL  - 172
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.673/
DO  - 10.4007/annals.2010.172.673
LA  - en
ID  - 10_4007_annals_2010_172_673
ER  - 
%0 Journal Article
%A Radu Laza
%T The moduli space of cubic fourfolds  via the period map
%J Annals of mathematics
%D 2010
%P 673-711
%V 172
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.673/
%R 10.4007/annals.2010.172.673
%G en
%F 10_4007_annals_2010_172_673
Radu Laza. The moduli space of cubic fourfolds  via the period map. Annals of mathematics, Tome 172 (2010) no. 1, pp. 673-711. doi : 10.4007/annals.2010.172.673. http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.673/

Cité par Sources :