Gravitational allocation to Poisson points
Annals of mathematics, Tome 172 (2010) no. 1, pp. 617-671.

Voir la notice de l'article provenant de la source Annals of Mathematics website

For $d\ge 3$, we construct a non-randomized, fair, and translation-equivariant allocation of Lebesgue measure to the points of a standard Poisson point process in $\mathbb{R}^d$, defined by allocating to each of the Poisson points its basin of attraction with respect to the flow induced by a gravitational force field exerted by the points of the Poisson process. We prove that this allocation rule is economical in the sense that the allocation diameter, defined as the diameter $X$ of the basin of attraction containing the origin, is a random variable with a rapidly decaying tail. Specifically, we have the tail bound \[\mathbb{P}(X > R) \le C \operatorname{exp}\big[-c R (\log R)^{\alpha_d} \big]\] for all $R>2$, where: $\alpha_d = \frac{d-2}{d}$ for $d\ge 4$; $\alpha_3$ can be taken as any number less than $-4/3$; and $C$ and $c$ are positive constants that depend on $d$ and $\alpha_d$. This is the first construction of an allocation rule of Lebesgue measure to a Poisson point process with subpolynomial decay of the tail $\mathbb{P}(X>R)$.
DOI : 10.4007/annals.2010.172.617

Sourav Chatterjee 1 ; Ron Peled 2 ; Yuval Peres 3 ; Dan Romik 4

1 Department of Statistics, 367 Evans Hall, The University of California, Berkeley, CA 94720-3860, United States
2 Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012-1185, United States
3 Microsoft Research, One Microsoft Way, Redmond, WA 98052-6399, United States
4 Department of Mathematics, University of California, Davis, One Shields Ave., Davis, CA 95616, United States
@article{10_4007_annals_2010_172_617,
     author = {Sourav Chatterjee and Ron Peled and Yuval Peres and Dan Romik},
     title = {Gravitational allocation to {Poisson} points},
     journal = {Annals of mathematics},
     pages = {617--671},
     publisher = {mathdoc},
     volume = {172},
     number = {1},
     year = {2010},
     doi = {10.4007/annals.2010.172.617},
     mrnumber = {2680428},
     zbl = {1206.60013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.617/}
}
TY  - JOUR
AU  - Sourav Chatterjee
AU  - Ron Peled
AU  - Yuval Peres
AU  - Dan Romik
TI  - Gravitational allocation to Poisson points
JO  - Annals of mathematics
PY  - 2010
SP  - 617
EP  - 671
VL  - 172
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.617/
DO  - 10.4007/annals.2010.172.617
LA  - en
ID  - 10_4007_annals_2010_172_617
ER  - 
%0 Journal Article
%A Sourav Chatterjee
%A Ron Peled
%A Yuval Peres
%A Dan Romik
%T Gravitational allocation to Poisson points
%J Annals of mathematics
%D 2010
%P 617-671
%V 172
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.617/
%R 10.4007/annals.2010.172.617
%G en
%F 10_4007_annals_2010_172_617
Sourav Chatterjee; Ron Peled; Yuval Peres; Dan Romik. Gravitational allocation to Poisson points. Annals of mathematics, Tome 172 (2010) no. 1, pp. 617-671. doi : 10.4007/annals.2010.172.617. http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.617/

Cité par Sources :