KAM for the nonlinear Schrödinger equation
Annals of mathematics, Tome 172 (2010) no. 1, pp. 371-435.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We consider the $d$-dimensional nonlinear Schrödinger equation under periodic boundary conditions: \[ -i\dot u=-\Delta u+V(x)*u+\varepsilon \frac{\partial F}{\partial \bar u}(x,u,\bar u), \quad u=u(t,x),\;x\in\mathbb{T}^d \] where $V(x)=\sum \hat{V}(a)e^{i\langle a,x\rangle}$ is an analytic function with $\hat V$ real, and $F$ is a real analytic function in $\Re u$, $\Im u$ and $x$. (This equation is a popular model for the ‘real’ NLS equation, where instead of the convolution term $V*u$ we have the potential term $Vu$.) For $\varepsilon=0$ the equation is linear and has time–quasi-periodic solutions \[ u(t,x)=\sum_{a\in \mathcal{A}}\hat u(a)e^{i(|a|^2+\hat{V}(a))t}e^{i\langle a,x\rangle}, \quad |\hat u(a)|>0, \] where $\mathcal{A}$ is any finite subset of $\mathbb{Z}^d$. We shall treat $\omega_a=|a|^2+\hat V(a)$, $a\in\mathcal{A}$, as free parameters in some domain $U\subset\mathbb{R}^{\mathcal{A}}$.
DOI : 10.4007/annals.2010.172.371

L. Hakan Eliasson 1 ; Sergei B. Kuksin 2

1 University of Paris 7, Department of Mathematics, Case 7052, 2 place Jussieu, Paris, France
2 CMLS, Ecole Polytechnique, 91128 Palaiseau, France
@article{10_4007_annals_2010_172_371,
     author = {L. Hakan Eliasson and Sergei B. Kuksin},
     title = {KAM for the nonlinear {Schr\"odinger} equation},
     journal = {Annals of mathematics},
     pages = {371--435},
     publisher = {mathdoc},
     volume = {172},
     number = {1},
     year = {2010},
     doi = {10.4007/annals.2010.172.371},
     mrnumber = {2680422},
     zbl = {1201.35177},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.371/}
}
TY  - JOUR
AU  - L. Hakan Eliasson
AU  - Sergei B. Kuksin
TI  - KAM for the nonlinear Schrödinger equation
JO  - Annals of mathematics
PY  - 2010
SP  - 371
EP  - 435
VL  - 172
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.371/
DO  - 10.4007/annals.2010.172.371
LA  - en
ID  - 10_4007_annals_2010_172_371
ER  - 
%0 Journal Article
%A L. Hakan Eliasson
%A Sergei B. Kuksin
%T KAM for the nonlinear Schrödinger equation
%J Annals of mathematics
%D 2010
%P 371-435
%V 172
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.371/
%R 10.4007/annals.2010.172.371
%G en
%F 10_4007_annals_2010_172_371
L. Hakan Eliasson; Sergei B. Kuksin. KAM for the nonlinear Schrödinger equation. Annals of mathematics, Tome 172 (2010) no. 1, pp. 371-435. doi : 10.4007/annals.2010.172.371. http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.371/

Cité par Sources :