Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate
Annals of mathematics, Tome 172 (2010) no. 1, pp. 291-370.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Consider a system of $N$ bosons in three dimensions interacting via a repulsive short range pair potential $N^2V(N(x_i-x_j))$, where $\mathbf{x}=(x_1, \ldots, x_N)$ denotes the positions of the particles. Let $H_N$ denote the Hamiltonian of the system and let $\psi_{N,t}$ be the solution to the Schrödinger equation. Suppose that the initial data $\psi_{N,0}$ satisfies the energy condition \[ \langle \psi_{N,0}, H_N^k \psi_{N,0} \rangle \leq C^k N^k \; \] for $k=1,2,\ldots\; $. We also assume that the $k$-particle density matrices of the initial state are asymptotically factorized as $N\to\infty$. We prove that the $k$-particle density matrices of $\psi_{N,t}$ are also asymptotically factorized and the one particle orbital wave function solves the Gross-Pitaevskii equation, a cubic nonlinear Schrödinger equation with the coupling constant given by the scattering length of the potential $V$. We also prove the same conclusion if the energy condition holds only for $k=1$ but the factorization of $\psi_{N,0}$ is assumed in a stronger sense.
DOI : 10.4007/annals.2010.172.291

László Erdős 1 ; Benjamin Schlein 2 ; Horng-Tzer Yau 3

1 Institute of Mathematics, University of Munich, Theresienstr. 39, D-80333 Munich, Germany
2 DPMMS, Room E1.01, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WB, United Kingdom
3 Department of Mathematics, Harvard University, One Oxford Street, Cambridge, MA 02138, United States
@article{10_4007_annals_2010_172_291,
     author = {L\'aszl\'o Erd\H{o}s and Benjamin Schlein and Horng-Tzer Yau},
     title = {Derivation of the {Gross-Pitaevskii} equation for the dynamics of {Bose-Einstein} condensate},
     journal = {Annals of mathematics},
     pages = {291--370},
     publisher = {mathdoc},
     volume = {172},
     number = {1},
     year = {2010},
     doi = {10.4007/annals.2010.172.291},
     mrnumber = {2680421},
     zbl = {1204.82028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.291/}
}
TY  - JOUR
AU  - László Erdős
AU  - Benjamin Schlein
AU  - Horng-Tzer Yau
TI  - Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate
JO  - Annals of mathematics
PY  - 2010
SP  - 291
EP  - 370
VL  - 172
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.291/
DO  - 10.4007/annals.2010.172.291
LA  - en
ID  - 10_4007_annals_2010_172_291
ER  - 
%0 Journal Article
%A László Erdős
%A Benjamin Schlein
%A Horng-Tzer Yau
%T Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate
%J Annals of mathematics
%D 2010
%P 291-370
%V 172
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.291/
%R 10.4007/annals.2010.172.291
%G en
%F 10_4007_annals_2010_172_291
László Erdős; Benjamin Schlein; Horng-Tzer Yau. Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate. Annals of mathematics, Tome 172 (2010) no. 1, pp. 291-370. doi : 10.4007/annals.2010.172.291. http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.291/

Cité par Sources :