Boundary behavior and the Martin boundary problem for $p$ harmonic functions in Lipschitz domains
Annals of mathematics, Tome 172 (2010) no. 3, pp. 1907-1948.

Voir la notice de l'article provenant de la source Annals of Mathematics website

In a previous article, we proved a boundary Harnack inequality for the ratio of two positive $p$ harmonic functions, vanishing on a portion of the boundary of a Lipschitz domain. In the current paper we continue our study by showing that this ratio is Hölder continuous up to the boundary. We also consider the Martin boundary of certain domains and the corresponding question of when a minimal positive $ p $ harmonic function (with respect to a given boundary point $ w$) is unique up to constant multiples. In particular we show that the Martin boundary can be identified with the topological boundary in domains that are convex or $ C^1$. Minimal positive $ p $ harmonic functions relative to a boundary point $ w $ in a Lipschitz domain are shown to be unique, up to constant multiples, provided the boundary is sufficiently flat at $ w$.
DOI : 10.4007/annals.2010.172.1907

John Lewis 1 ; Kaj Nyström  2

1 Department of Mathematics<br/>University of Kentucky<br/>Lexington, KY 40506-0027<br/>United States
2 Department of Mathematics<br/>Umeå University<br/>S-90187 Umeå<br/>Sweden
@article{10_4007_annals_2010_172_1907,
     author = {John Lewis and Kaj Nystr\"om },
     title = {Boundary behavior and the {Martin} boundary problem for $p$ harmonic functions  in {Lipschitz} domains},
     journal = {Annals of mathematics},
     pages = {1907--1948},
     publisher = {mathdoc},
     volume = {172},
     number = {3},
     year = {2010},
     doi = {10.4007/annals.2010.172.1907},
     mrnumber = {2726103},
     zbl = {1210.31004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.1907/}
}
TY  - JOUR
AU  - John Lewis
AU  - Kaj Nyström 
TI  - Boundary behavior and the Martin boundary problem for $p$ harmonic functions  in Lipschitz domains
JO  - Annals of mathematics
PY  - 2010
SP  - 1907
EP  - 1948
VL  - 172
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.1907/
DO  - 10.4007/annals.2010.172.1907
LA  - en
ID  - 10_4007_annals_2010_172_1907
ER  - 
%0 Journal Article
%A John Lewis
%A Kaj Nyström 
%T Boundary behavior and the Martin boundary problem for $p$ harmonic functions  in Lipschitz domains
%J Annals of mathematics
%D 2010
%P 1907-1948
%V 172
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.1907/
%R 10.4007/annals.2010.172.1907
%G en
%F 10_4007_annals_2010_172_1907
John Lewis; Kaj Nyström . Boundary behavior and the Martin boundary problem for $p$ harmonic functions  in Lipschitz domains. Annals of mathematics, Tome 172 (2010) no. 3, pp. 1907-1948. doi : 10.4007/annals.2010.172.1907. http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.1907/

Cité par Sources :