Einstein solvmanifolds are standard
Annals of mathematics, Tome 172 (2010) no. 3, pp. 1859-1877.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We study Einstein manifolds admitting a transitive solvable Lie group of isometries (solvmanifolds). It is conjectured that these exhaust the class of noncompact homogeneous Einstein manifolds. J. Heber has shown that under a simple algebraic condition (he calls such a solvmanifold standard), Einstein solvmanifolds have many remarkable structural and uniqueness properties. In this paper, we prove that any Einstein solvmanifold is standard, by applying a stratification procedure adapted from one in geometric invariant theory due to F. Kirwan.
DOI : 10.4007/annals.2010.172.1859

Jorge Lauret 1

1 FaMAF and CIEM<br/>Universidad Nacional de Córdoba<br/>Córdoba<br/>Argentina
@article{10_4007_annals_2010_172_1859,
     author = {Jorge Lauret},
     title = {Einstein solvmanifolds are standard},
     journal = {Annals of mathematics},
     pages = {1859--1877},
     publisher = {mathdoc},
     volume = {172},
     number = {3},
     year = {2010},
     doi = {10.4007/annals.2010.172.1859},
     mrnumber = {2726101},
     zbl = {1220.53061},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.1859/}
}
TY  - JOUR
AU  - Jorge Lauret
TI  - Einstein solvmanifolds are standard
JO  - Annals of mathematics
PY  - 2010
SP  - 1859
EP  - 1877
VL  - 172
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.1859/
DO  - 10.4007/annals.2010.172.1859
LA  - en
ID  - 10_4007_annals_2010_172_1859
ER  - 
%0 Journal Article
%A Jorge Lauret
%T Einstein solvmanifolds are standard
%J Annals of mathematics
%D 2010
%P 1859-1877
%V 172
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.1859/
%R 10.4007/annals.2010.172.1859
%G en
%F 10_4007_annals_2010_172_1859
Jorge Lauret. Einstein solvmanifolds are standard. Annals of mathematics, Tome 172 (2010) no. 3, pp. 1859-1877. doi : 10.4007/annals.2010.172.1859. http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.1859/

Cité par Sources :