Local rigidity of partially hyperbolic actions I. KAM method and ${\mathbb Z^k}$ actions on the torus
Annals of mathematics, Tome 172 (2010) no. 3, pp. 1805-1858.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We show $\Bbb C^\infty$ local rigidity for $\mathbb{Z}^k$ $(k\ge 2)$ higher rank partially hyperbolic actions by toral automorphisms, using a generalization of the KAM (Kolmogorov-Arnold-Moser) iterative scheme. We also prove the existence of irreducible genuinely partially hyperbolic higher rank actions on any torus $\mathbb{T}^N$ for any even $N\ge 6$.
DOI : 10.4007/annals.2010.172.1805

Danijela Damjanović  1 ; Anatole Katok 2

1 Department of Mathematics<br/>Rice University, 6100 Main Street, Houston, TX 77005<br/>United States
2 Department of Mathematics<br/>The Pennsylvania State University<br/>University Park<br/>State College, 16802<br/>United States
@article{10_4007_annals_2010_172_1805,
     author = {Danijela Damjanovi\'c  and Anatole Katok},
     title = {Local rigidity of partially hyperbolic actions {I.} {KAM} method and ${\mathbb Z^k}$ actions on the torus},
     journal = {Annals of mathematics},
     pages = {1805--1858},
     publisher = {mathdoc},
     volume = {172},
     number = {3},
     year = {2010},
     doi = {10.4007/annals.2010.172.1805},
     mrnumber = {2726100

},
     zbl = {1209.37017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.1805/}
}
TY  - JOUR
AU  - Danijela Damjanović 
AU  - Anatole Katok
TI  - Local rigidity of partially hyperbolic actions I. KAM method and ${\mathbb Z^k}$ actions on the torus
JO  - Annals of mathematics
PY  - 2010
SP  - 1805
EP  - 1858
VL  - 172
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.1805/
DO  - 10.4007/annals.2010.172.1805
LA  - en
ID  - 10_4007_annals_2010_172_1805
ER  - 
%0 Journal Article
%A Danijela Damjanović 
%A Anatole Katok
%T Local rigidity of partially hyperbolic actions I. KAM method and ${\mathbb Z^k}$ actions on the torus
%J Annals of mathematics
%D 2010
%P 1805-1858
%V 172
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.1805/
%R 10.4007/annals.2010.172.1805
%G en
%F 10_4007_annals_2010_172_1805
Danijela Damjanović ; Anatole Katok. Local rigidity of partially hyperbolic actions I. KAM method and ${\mathbb Z^k}$ actions on the torus. Annals of mathematics, Tome 172 (2010) no. 3, pp. 1805-1858. doi : 10.4007/annals.2010.172.1805. http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.1805/

Cité par Sources :