Erratum for Boundedness of families of canonically polarized manifolds: A higher dimensional analogue of Shafarevich’s conjecture$^\ast$
Annals of mathematics, Tome 173 (2011) no. 1, pp. 585-617.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We show that the number of deformation types of canonically polarized manifolds over an arbitrary variety with proper singular locus is finite, and that this number is uniformly bounded in any finite type family of base varieties. As a corollary we show that a direct generalization of the geometric version of Shafarevich’s original conjecture holds for infinitesimally rigid families of canonically polarized varieties.
DOI : 10.4007/annals.2010.172.1719

Sándor J. Kovács  1 ; Max Lieblich 1

1 Department of Mathematics<br/>University of Washington,<br/> Seattle, WA 98195
@article{10_4007_annals_2010_172_1719,
     author = {S\'andor J. Kov\'acs  and Max Lieblich},
     title = {Erratum for {Boundedness} of families of canonically polarized manifolds: {A} higher dimensional analogue of {Shafarevich{\textquoteright}s} conjecture$^\ast$},
     journal = {Annals of mathematics},
     pages = {585--617},
     publisher = {mathdoc},
     volume = {173},
     number = {1},
     year = {2011},
     doi = {10.4007/annals.2010.172.1719},
     mrnumber = {2753611
},
     zbl = {05960667
},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.1719/}
}
TY  - JOUR
AU  - Sándor J. Kovács 
AU  - Max Lieblich
TI  - Erratum for Boundedness of families of canonically polarized manifolds: A higher dimensional analogue of Shafarevich’s conjecture$^\ast$
JO  - Annals of mathematics
PY  - 2011
SP  - 585
EP  - 617
VL  - 173
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.1719/
DO  - 10.4007/annals.2010.172.1719
LA  - en
ID  - 10_4007_annals_2010_172_1719
ER  - 
%0 Journal Article
%A Sándor J. Kovács 
%A Max Lieblich
%T Erratum for Boundedness of families of canonically polarized manifolds: A higher dimensional analogue of Shafarevich’s conjecture$^\ast$
%J Annals of mathematics
%D 2011
%P 585-617
%V 173
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.1719/
%R 10.4007/annals.2010.172.1719
%G en
%F 10_4007_annals_2010_172_1719
Sándor J. Kovács ; Max Lieblich. Erratum for Boundedness of families of canonically polarized manifolds: A higher dimensional analogue of Shafarevich’s conjecture$^\ast$. Annals of mathematics, Tome 173 (2011) no. 1, pp. 585-617. doi : 10.4007/annals.2010.172.1719. http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.1719/

Cité par Sources :