Polynomials with $\operatorname{PSL}(2)$ monodromy
Annals of mathematics, Tome 172 (2010) no. 2, pp. 1315-1359.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Let $k$ be a field of characteristic $p>0$, let $q$ be a power of $p$, and let $u$ be transcendental over $k$. We determine all polynomials $f\in k[X]\setminus k[X^p]$ of degree $q(q-1)/2$ for which the Galois group of $f(X)-u$ over $k(u)$ has a transitive normal subgroup isomorphic to $\operatorname{PSL}_2(q)$, subject to a certain ramification hypothesis. As a consequence, we describe all polynomials $f\in k[X]$ such that $\operatorname{deg}(f)$ is not a power of $p$ and $f$ is functionally indecomposable over $k$ but $f$ decomposes over an extension of $k$. Moreover, except for one ramification configuration (which is handled in a companion paper with Rosenberg), we describe all indecomposable polynomials $f\in k[X]$ such that $\operatorname{deg}(f)$ is not a power of $p$ and $f$ is exceptional, in the sense that $X-Y$ is the only absolutely irreducible factor of $f(X)-f(Y)$ which lies in $k[X,Y]$. It is known that, when $k$ is finite, a polynomial $f$ is exceptional if and only if it induces a bijection on infinitely many finite extensions of $k$.
DOI : 10.4007/annals.2010.172.1315

Robert M. Guralnick 1 ; Michael E. Zieve 2

1 Department of Mathematics<br/>University of Southern California<br/>Los Angeles, CA 90089-2532<br/>United States
2 Department of Mathematics<br/>University of Michigan<br/>530 Church Street<br/>Ann Arbor, MI 48109-1043<br/>United States
@article{10_4007_annals_2010_172_1315,
     author = {Robert M. Guralnick and Michael E. Zieve},
     title = {Polynomials with $\operatorname{PSL}(2)$ monodromy},
     journal = {Annals of mathematics},
     pages = {1315--1359},
     publisher = {mathdoc},
     volume = {172},
     number = {2},
     year = {2010},
     doi = {10.4007/annals.2010.172.1315},
     mrnumber = {2680492},
     zbl = {1214.12003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.1315/}
}
TY  - JOUR
AU  - Robert M. Guralnick
AU  - Michael E. Zieve
TI  - Polynomials with $\operatorname{PSL}(2)$ monodromy
JO  - Annals of mathematics
PY  - 2010
SP  - 1315
EP  - 1359
VL  - 172
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.1315/
DO  - 10.4007/annals.2010.172.1315
LA  - en
ID  - 10_4007_annals_2010_172_1315
ER  - 
%0 Journal Article
%A Robert M. Guralnick
%A Michael E. Zieve
%T Polynomials with $\operatorname{PSL}(2)$ monodromy
%J Annals of mathematics
%D 2010
%P 1315-1359
%V 172
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.1315/
%R 10.4007/annals.2010.172.1315
%G en
%F 10_4007_annals_2010_172_1315
Robert M. Guralnick; Michael E. Zieve. Polynomials with $\operatorname{PSL}(2)$ monodromy. Annals of mathematics, Tome 172 (2010) no. 2, pp. 1315-1359. doi : 10.4007/annals.2010.172.1315. http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.1315/

Cité par Sources :