Hilbert’s fifth problem for local groups
Annals of mathematics, Tome 172 (2010) no. 2, pp. 1269-1314.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We solve Hilbert’s fifth problem for local groups: every locally euclidean local group is locally isomorphic to a Lie group. Jacoby claimed a proof of this in 1957, but this proof is seriously flawed. We use methods from nonstandard analysis and model our solution after a treatment of Hilbert’s fifth problem for global groups by Hirschfeld.
DOI : 10.4007/annals.2010.172.1269

Isaac Goldbring 1

1 University of Illinois<br/>Department of Mathematics<br/>1409 W. Green Street<br/>Urbana, IL 61801<br/>and <br/>University of California, Los Angeles<br/>Department of Mathematics<br/>520 Portola Plaza, Box 951555<br/>Los Angeles CA 90095-1555
@article{10_4007_annals_2010_172_1269,
     author = {Isaac Goldbring},
     title = {Hilbert{\textquoteright}s fifth problem for local groups},
     journal = {Annals of mathematics},
     pages = {1269--1314},
     publisher = {mathdoc},
     volume = {172},
     number = {2},
     year = {2010},
     doi = {10.4007/annals.2010.172.1269},
     mrnumber = {2680491},
     zbl = {1219.22004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.1269/}
}
TY  - JOUR
AU  - Isaac Goldbring
TI  - Hilbert’s fifth problem for local groups
JO  - Annals of mathematics
PY  - 2010
SP  - 1269
EP  - 1314
VL  - 172
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.1269/
DO  - 10.4007/annals.2010.172.1269
LA  - en
ID  - 10_4007_annals_2010_172_1269
ER  - 
%0 Journal Article
%A Isaac Goldbring
%T Hilbert’s fifth problem for local groups
%J Annals of mathematics
%D 2010
%P 1269-1314
%V 172
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.1269/
%R 10.4007/annals.2010.172.1269
%G en
%F 10_4007_annals_2010_172_1269
Isaac Goldbring. Hilbert’s fifth problem for local groups. Annals of mathematics, Tome 172 (2010) no. 2, pp. 1269-1314. doi : 10.4007/annals.2010.172.1269. http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.1269/

Cité par Sources :