Duality via cycle complexes
Annals of mathematics, Tome 172 (2010) no. 2, pp. 1095-1126.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We show that Bloch’s complex of relative zero-cycles can be used as a dualizing complex over perfect fields and number rings. This leads to duality theorems for torsion sheaves on arbitrary separated schemes of finite type over algebraically closed fields, finite fields, local fields of mixed characteristic, and rings of integers in number rings, generalizing results which so far have only been known for smooth schemes or in low dimensions, and unifying the $p$-adic and $l$-adic theory. As an application, we generalize Rojtman’s theorem to normal, projective schemes.
DOI : 10.4007/annals.2010.172.1095

Thomas Geisser 1

1 Department of Mathematics<br/>University of Southern California<br/>3620 South Vermont Ave.<br/>KAP 108<br/>Los Angeles, CA 90089-2532<br/>United States
@article{10_4007_annals_2010_172_1095,
     author = {Thomas Geisser},
     title = {Duality via cycle complexes},
     journal = {Annals of mathematics},
     pages = {1095--1126},
     publisher = {mathdoc},
     volume = {172},
     number = {2},
     year = {2010},
     doi = {10.4007/annals.2010.172.1095},
     mrnumber = {2680487},
     zbl = {1215.19001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.1095/}
}
TY  - JOUR
AU  - Thomas Geisser
TI  - Duality via cycle complexes
JO  - Annals of mathematics
PY  - 2010
SP  - 1095
EP  - 1126
VL  - 172
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.1095/
DO  - 10.4007/annals.2010.172.1095
LA  - en
ID  - 10_4007_annals_2010_172_1095
ER  - 
%0 Journal Article
%A Thomas Geisser
%T Duality via cycle complexes
%J Annals of mathematics
%D 2010
%P 1095-1126
%V 172
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.1095/
%R 10.4007/annals.2010.172.1095
%G en
%F 10_4007_annals_2010_172_1095
Thomas Geisser. Duality via cycle complexes. Annals of mathematics, Tome 172 (2010) no. 2, pp. 1095-1126. doi : 10.4007/annals.2010.172.1095. http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.1095/

Cité par Sources :