A family of Calabi-Yau varieties and potential automorphy
Annals of mathematics, Tome 171 (2010) no. 2, pp. 779-813.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove potential modularity theorems for $l$-adic representations of any dimension. From these results we deduce the Sato-Tate conjecture for all elliptic curves with nonintegral $j$-invariant defined over a totally real field.
DOI : 10.4007/annals.2010.171.779

Michael Harris 1 ; Nick Shepherd-Barron 2 ; Richard Taylor 3

1 Centre de Mathématiques de Jussieu<br/>Université Paris 7 Denis Diderot<br/>Case Postale 7012<br/>2, place Jussieu<br/>F-75251 Paris Cedex 05<br/>France
2 DPMMS<br/>Centre for Mathematical Sciences<br/>University of Cambridge<br/>Wilberforce Road<br/>Cambridge CB3 0WB<br/>England
3 Department of Mathematics<br/>One Oxford Street<br/>Harvard University<br/>Cambridge, MA 02138<br/>United States
@article{10_4007_annals_2010_171_779,
     author = {Michael Harris and Nick Shepherd-Barron and Richard Taylor},
     title = {A family of {Calabi-Yau} varieties  and potential automorphy},
     journal = {Annals of mathematics},
     pages = {779--813},
     publisher = {mathdoc},
     volume = {171},
     number = {2},
     year = {2010},
     doi = {10.4007/annals.2010.171.779},
     mrnumber = {2630056},
     zbl = {05712744},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.171.779/}
}
TY  - JOUR
AU  - Michael Harris
AU  - Nick Shepherd-Barron
AU  - Richard Taylor
TI  - A family of Calabi-Yau varieties  and potential automorphy
JO  - Annals of mathematics
PY  - 2010
SP  - 779
EP  - 813
VL  - 171
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.171.779/
DO  - 10.4007/annals.2010.171.779
LA  - en
ID  - 10_4007_annals_2010_171_779
ER  - 
%0 Journal Article
%A Michael Harris
%A Nick Shepherd-Barron
%A Richard Taylor
%T A family of Calabi-Yau varieties  and potential automorphy
%J Annals of mathematics
%D 2010
%P 779-813
%V 171
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.171.779/
%R 10.4007/annals.2010.171.779
%G en
%F 10_4007_annals_2010_171_779
Michael Harris; Nick Shepherd-Barron; Richard Taylor. A family of Calabi-Yau varieties  and potential automorphy. Annals of mathematics, Tome 171 (2010) no. 2, pp. 779-813. doi : 10.4007/annals.2010.171.779. http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.171.779/

Cité par Sources :