Characterization of Lee-Yang polynomials
Annals of mathematics, Tome 171 (2010) no. 1, pp. 589-603.

Voir la notice de l'article provenant de la source Annals of Mathematics website

The Lee-Yang circle theorem describes complex polynomials of degree $n$ in $z$ with all their zeros on the unit circle $|z|=1$. These polynomials are obtained by taking $z_1=\dots=z_n=z$ in certain multiaffine polynomials $\Psi(z_1,\dots,z_n)$ which we call Lee-Yang polynomials (they do not vanish when $|z_1|,\dots,|z_n|<1$ or $|z_1|,\dots,|z_n|>1$). We characterize the Lee-Yang polynomials $\Psi$ in $n+1$ variables in terms of polynomials $\Phi$ in $n$ variables (those such that $\Phi(z_1,\dots,z_n)\ne0$ when $|z_1|,\dots,|z_n|<1$). This characterization gives us a good understanding of Lee-Yang polynomials and allows us to exhibit some new examples. In the physical situation where the $\Psi$ are temperature dependent partition functions, we find that those $\Psi$ which are Lee-Yang polynomials for all temperatures are precisely the polynomials with pair interactions originally considered by Lee and Yang.
DOI : 10.4007/annals.2010.171.589

David Ruelle 1

1 Department of Mathematics, Rutgers University, 110 Frelinghuson Rd, Piscataway, NJ 08544-8019, United States and Institut des Hautes Études Scientifiques, Le Bois-Marie 35, route de Chartres, 91440 Bures Sur Yvette, France
@article{10_4007_annals_2010_171_589,
     author = {David Ruelle},
     title = {Characterization of {Lee-Yang} polynomials},
     journal = {Annals of mathematics},
     pages = {589--603},
     publisher = {mathdoc},
     volume = {171},
     number = {1},
     year = {2010},
     doi = {10.4007/annals.2010.171.589},
     mrnumber = {2630051},
     zbl = {05712739},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.171.589/}
}
TY  - JOUR
AU  - David Ruelle
TI  - Characterization of Lee-Yang polynomials
JO  - Annals of mathematics
PY  - 2010
SP  - 589
EP  - 603
VL  - 171
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.171.589/
DO  - 10.4007/annals.2010.171.589
LA  - en
ID  - 10_4007_annals_2010_171_589
ER  - 
%0 Journal Article
%A David Ruelle
%T Characterization of Lee-Yang polynomials
%J Annals of mathematics
%D 2010
%P 589-603
%V 171
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.171.589/
%R 10.4007/annals.2010.171.589
%G en
%F 10_4007_annals_2010_171_589
David Ruelle. Characterization of Lee-Yang polynomials. Annals of mathematics, Tome 171 (2010) no. 1, pp. 589-603. doi : 10.4007/annals.2010.171.589. http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.171.589/

Cité par Sources :