The Smith-Toda complex $V((p+1)/2)$ does not exist
Annals of mathematics, Tome 171 (2010) no. 1, pp. 491-509.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Using a generalized homotopy fixed point spectral sequence due to Hopkins and Miller, we show that the Smith-Toda complex $V((p+1)/2)$ does not exist for $p$ a prime greater than 5. This extends earlier results of Toda and Ravenel for the primes 2, 3, and 5. It is also shown that if $V((p-1)/2)$ exists, it is not a ring spectrum.
@article{10_4007_annals_2010_171_491,
     author = {Lee S. Nave},
     title = {The {Smith-Toda} complex $V((p+1)/2)$  does not exist},
     journal = {Annals of mathematics},
     pages = {491--509},
     publisher = {mathdoc},
     volume = {171},
     number = {1},
     year = {2010},
     doi = {10.4007/annals.2010.171.491},
     mrnumber = {2630045},
     zbl = {1194.55017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.171.491/}
}
TY  - JOUR
AU  - Lee S. Nave
TI  - The Smith-Toda complex $V((p+1)/2)$  does not exist
JO  - Annals of mathematics
PY  - 2010
SP  - 491
EP  - 509
VL  - 171
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.171.491/
DO  - 10.4007/annals.2010.171.491
LA  - en
ID  - 10_4007_annals_2010_171_491
ER  - 
%0 Journal Article
%A Lee S. Nave
%T The Smith-Toda complex $V((p+1)/2)$  does not exist
%J Annals of mathematics
%D 2010
%P 491-509
%V 171
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.171.491/
%R 10.4007/annals.2010.171.491
%G en
%F 10_4007_annals_2010_171_491
Lee S. Nave. The Smith-Toda complex $V((p+1)/2)$  does not exist. Annals of mathematics, Tome 171 (2010) no. 1, pp. 491-509. doi : 10.4007/annals.2010.171.491. http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.171.491/

Cité par Sources :