Dyson’s ranks and Maass forms
Annals of mathematics, Tome 171 (2010) no. 1, pp. 419-449.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Motivated by work of Ramanujan, Freeman Dyson defined the rank of an integer partition to be its largest part minus its number of parts. If $N(m,n)$ denotes the number of partitions of $n$ with rank $m$, then it turns out that \[ R(w;q):=1+\!\sum_{n=1}^{\infty}\sum_{m=-\infty}^{\infty} \!\!\! N(m,n)w^mq^n \! =\! 1+\!\sum_{n=1}^{\infty}\!\frac{q^{n^2}} {\prod_{j=1}^{n}(1\!-\!(w\!+\!w^{-1})q^j\!+ q^{2j})}. \] We show that if $\zeta\neq 1$ is a root of unity, then $R(\zeta;q)$ is essentially the holomorphic part of a weight $1/2$ weak Maass form on a subgroup of $\operatorname{SL}_2(\mathbb Z)$. For integers $0\leq r\lt t$, we use this result to determine the modularity of the generating function for $N(r,t;n)$, the number of partitions of $n$ whose rank is congruent to $r\pmod t$. We extend the modularity above to construct an infinite family of vector valued weight $1/2$ forms for the full modular group $\operatorname{SL}_2(\mathbb Z)$, a result which is of independent interest.
DOI : 10.4007/annals.2010.171.419

Kathrin Bringmann 1 ; Ken Ono 2

1 Mathematical Institute of University of Cologne, Weyertal, 86-90, 50931 Cologne, Germany
2 Department of Mathematics, University of Wisconsin, Madison, WI 53706, United States
@article{10_4007_annals_2010_171_419,
     author = {Kathrin Bringmann and Ken Ono},
     title = {Dyson{\textquoteright}s ranks and {Maass} forms},
     journal = {Annals of mathematics},
     pages = {419--449},
     publisher = {mathdoc},
     volume = {171},
     number = {1},
     year = {2010},
     doi = {10.4007/annals.2010.171.419},
     mrnumber = {2630043},
     zbl = {05712731},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.171.419/}
}
TY  - JOUR
AU  - Kathrin Bringmann
AU  - Ken Ono
TI  - Dyson’s ranks and Maass forms
JO  - Annals of mathematics
PY  - 2010
SP  - 419
EP  - 449
VL  - 171
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.171.419/
DO  - 10.4007/annals.2010.171.419
LA  - en
ID  - 10_4007_annals_2010_171_419
ER  - 
%0 Journal Article
%A Kathrin Bringmann
%A Ken Ono
%T Dyson’s ranks and Maass forms
%J Annals of mathematics
%D 2010
%P 419-449
%V 171
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.171.419/
%R 10.4007/annals.2010.171.419
%G en
%F 10_4007_annals_2010_171_419
Kathrin Bringmann; Ken Ono. Dyson’s ranks and Maass forms. Annals of mathematics, Tome 171 (2010) no. 1, pp. 419-449. doi : 10.4007/annals.2010.171.419. http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.171.419/

Cité par Sources :