Mirković-Vilonen cycles and polytopes
Annals of mathematics, Tome 171 (2010) no. 1, pp. 245-294.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We give an explicit description of the Mirković-Vilonen cycles on the affine Grassmannian for arbitrary complex reductive groups. We also give a combinatorial characterization of the MV polytopes. We prove that a polytope is an MV polytope if and only if it is a lattice polytope whose defining hyperplanes are parallel to those of the Weyl polytopes and whose 2-faces are rank 2 MV polytopes. As an application, we give a bijection between Lusztig’s canonical basis and the set of MV polytopes.
DOI : 10.4007/annals.2010.171.245

Joel Kamnitzer 1

1 Department of Mathematics, University of Toronto, Room 6290, 40 St. George Street, Toronto, Ontario, Canada M5S 2E4
@article{10_4007_annals_2010_171_245,
     author = {Joel Kamnitzer},
     title = {Mirkovi\'c-Vilonen cycles and polytopes},
     journal = {Annals of mathematics},
     pages = {245--294},
     publisher = {mathdoc},
     volume = {171},
     number = {1},
     year = {2010},
     doi = {10.4007/annals.2010.171.245},
     mrnumber = {2630039
},
     zbl = {05712727},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.171.245/}
}
TY  - JOUR
AU  - Joel Kamnitzer
TI  - Mirković-Vilonen cycles and polytopes
JO  - Annals of mathematics
PY  - 2010
SP  - 245
EP  - 294
VL  - 171
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.171.245/
DO  - 10.4007/annals.2010.171.245
LA  - en
ID  - 10_4007_annals_2010_171_245
ER  - 
%0 Journal Article
%A Joel Kamnitzer
%T Mirković-Vilonen cycles and polytopes
%J Annals of mathematics
%D 2010
%P 245-294
%V 171
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.171.245/
%R 10.4007/annals.2010.171.245
%G en
%F 10_4007_annals_2010_171_245
Joel Kamnitzer. Mirković-Vilonen cycles and polytopes. Annals of mathematics, Tome 171 (2010) no. 1, pp. 245-294. doi : 10.4007/annals.2010.171.245. http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.171.245/

Cité par Sources :