Vacant set of random interlacements and percolation
Annals of mathematics, Tome 171 (2010) no. 3, pp. 2039-2087.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We introduce a model of random interlacements made of a countable collection of doubly infinite paths on $\mathbb{Z}^d$, $d \ge 3$. A nonnegative parameter $u$ measures how many trajectories enter the picture. This model describes in the large $N$ limit the microscopic structure in the bulk, which arises when considering the disconnection time of a discrete cylinder $(\mathbb{Z}/N\mathbb{Z})^{d-1} \times \mathbb{Z}$ by simple random walk, or the set of points visited by simple random walk on the discrete torus $(\mathbb{Z}/N \mathbb{Z})^d$ at times of order $u N^d$. In particular we study the percolative properties of the vacant set left by the interlacement at level $u$, which is an infinite connected translation invariant random subset of $\mathbb{Z}^d$. We introduce a critical value $u_*$ such that the vacant set percolates for $u < u_*$ and does not percolate for $u > u_*$. Our main results show that $u_*$ is finite when $d \ge 3$ and strictly positive when $d \ge 7$.
DOI : 10.4007/annals.2010.171.2039

Alain-Sol Sznitman 1

1 ETH<br/>Departement Mathematik<br/>HG G 36.2<br/>Rämistrasse 101<br/>8092 Zürich<br/>Switzerland
@article{10_4007_annals_2010_171_2039,
     author = {Alain-Sol Sznitman},
     title = {Vacant set of random interlacements  and percolation},
     journal = {Annals of mathematics},
     pages = {2039--2087},
     publisher = {mathdoc},
     volume = {171},
     number = {3},
     year = {2010},
     doi = {10.4007/annals.2010.171.2039},
     mrnumber = {2680403},
     zbl = {2680403},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.171.2039/}
}
TY  - JOUR
AU  - Alain-Sol Sznitman
TI  - Vacant set of random interlacements  and percolation
JO  - Annals of mathematics
PY  - 2010
SP  - 2039
EP  - 2087
VL  - 171
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.171.2039/
DO  - 10.4007/annals.2010.171.2039
LA  - en
ID  - 10_4007_annals_2010_171_2039
ER  - 
%0 Journal Article
%A Alain-Sol Sznitman
%T Vacant set of random interlacements  and percolation
%J Annals of mathematics
%D 2010
%P 2039-2087
%V 171
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.171.2039/
%R 10.4007/annals.2010.171.2039
%G en
%F 10_4007_annals_2010_171_2039
Alain-Sol Sznitman. Vacant set of random interlacements  and percolation. Annals of mathematics, Tome 171 (2010) no. 3, pp. 2039-2087. doi : 10.4007/annals.2010.171.2039. http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.171.2039/

Cité par Sources :