Linear equations in primes
Annals of mathematics, Tome 171 (2010) no. 3, pp. 1753-1850.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Consider a system $\Psi$ of nonconstant affine-linear forms $\psi_1,\dots,\psi_t: \mathbb{Z}^d \to \mathbb{Z}$, no two of which are linearly dependent. Let $N$ be a large integer, and let $K \subseteq [-N,N]^d$ be convex. A generalisation of a famous and difficult open conjecture of Hardy and Littlewood predicts an asymptotic, as $N \to \infty$, for the number of integer points $ n \in \mathbb{Z}^d \cap K$ for which the integers $\psi_1( n),\dots,\psi_t( n)$ are simultaneously prime. This implies many other well-known conjectures, such as the twin prime conjecture and the (weak) Goldbach conjecture. It also allows one to count the number of solutions in a convex range to any simultaneous linear system of equations, in which all unknowns are required to be prime.
DOI : 10.4007/annals.2010.171.1753

Ben Green 1 ; Terence Tao 2

1 Centre for Mathematical Sciences<br/>Wilberforce Road<br/>Cambridge CB3 0WA<br/>United Kingdom
2 University of California<br/>Mathematics Department<br/>Los Angeles, CA 90095-1555<br/>United States
@article{10_4007_annals_2010_171_1753,
     author = {Ben Green and Terence Tao},
     title = {Linear equations in primes},
     journal = {Annals of mathematics},
     pages = {1753--1850},
     publisher = {mathdoc},
     volume = {171},
     number = {3},
     year = {2010},
     doi = {10.4007/annals.2010.171.1753},
     mrnumber = {2680398},
     zbl = {05712763},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.171.1753/}
}
TY  - JOUR
AU  - Ben Green
AU  - Terence Tao
TI  - Linear equations in primes
JO  - Annals of mathematics
PY  - 2010
SP  - 1753
EP  - 1850
VL  - 171
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.171.1753/
DO  - 10.4007/annals.2010.171.1753
LA  - en
ID  - 10_4007_annals_2010_171_1753
ER  - 
%0 Journal Article
%A Ben Green
%A Terence Tao
%T Linear equations in primes
%J Annals of mathematics
%D 2010
%P 1753-1850
%V 171
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.171.1753/
%R 10.4007/annals.2010.171.1753
%G en
%F 10_4007_annals_2010_171_1753
Ben Green; Terence Tao. Linear equations in primes. Annals of mathematics, Tome 171 (2010) no. 3, pp. 1753-1850. doi : 10.4007/annals.2010.171.1753. http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.171.1753/

Cité par Sources :