Divergent square averages
Annals of mathematics, Tome 171 (2010) no. 3, pp. 1479-1530.

Voir la notice de l'article provenant de la source Annals of Mathematics website

In this paper we answer a question of J. Bourgain which was motivated by questions A. Bellow and H. Furstenberg. We show that the sequence $\{ n^{2}\}_{n=1}^{\infty}$ is $L^{1}$-universally bad. This implies that it is not true that given a dynamical system $(X ,\Sigma, \mu, T)$ and $f\in L^{1}(\mu)$, the ergodic means \[ \lim_{N\to \infty}\frac{1}N\sum _{n=1}^{N}f(T^{n^{2}}(x)) \] converge almost surely.
DOI : 10.4007/annals.2010.171.1479

Zoltán Buczolich  1 ; R. Daniel Mauldin 2

1 Department of Analysis, Eötvös Loránd<br/>University, Pázmány Péter Sétány 1/c, 1117 Budapest, Hungary
2 University of North Texas<br/>Department of Mathematics<br/>Denton 76203-1430<br/>United States
@article{10_4007_annals_2010_171_1479,
     author = {Zolt\'an Buczolich  and R. Daniel Mauldin},
     title = {Divergent square averages},
     journal = {Annals of mathematics},
     pages = {1479--1530},
     publisher = {mathdoc},
     volume = {171},
     number = {3},
     year = {2010},
     doi = {10.4007/annals.2010.171.1479},
     mrnumber = {2680392},
     zbl = {1200.37003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.171.1479/}
}
TY  - JOUR
AU  - Zoltán Buczolich 
AU  - R. Daniel Mauldin
TI  - Divergent square averages
JO  - Annals of mathematics
PY  - 2010
SP  - 1479
EP  - 1530
VL  - 171
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.171.1479/
DO  - 10.4007/annals.2010.171.1479
LA  - en
ID  - 10_4007_annals_2010_171_1479
ER  - 
%0 Journal Article
%A Zoltán Buczolich 
%A R. Daniel Mauldin
%T Divergent square averages
%J Annals of mathematics
%D 2010
%P 1479-1530
%V 171
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.171.1479/
%R 10.4007/annals.2010.171.1479
%G en
%F 10_4007_annals_2010_171_1479
Zoltán Buczolich ; R. Daniel Mauldin. Divergent square averages. Annals of mathematics, Tome 171 (2010) no. 3, pp. 1479-1530. doi : 10.4007/annals.2010.171.1479. http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.171.1479/

Cité par Sources :