A measure-conjugacy invariant for free group actions
Annals of mathematics, Tome 171 (2010) no. 2, pp. 1387-1400 Cet article a éte moissonné depuis la source Annals of Mathematics website

Voir la notice de l'article

This paper introduces a new measure-conjugacy invariant for actions of free groups. Using this invariant, it is shown that two Bernoulli shifts over a finitely generated free group are measurably conjugate if and only if their base measures have the same entropy. This answers a question of Ornstein and Weiss.

DOI : 10.4007/annals.2010.171.1387

Lewis Phylip Bowen 1

1 Mathematics Department<br/>University of Hawaii at Manoa<br/>2565 McCarthy Mall<br/>Honolulu, HI 96822<br/>United States<br/>and <br/>Mathematics Department<br/>Mailstop 3368<br/>Texas A&M University<br/>College Station, TX 77843-3368<br/>United States
@article{10_4007_annals_2010_171_1387,
     author = {Lewis Phylip Bowen},
     title = {A measure-conjugacy invariant for free group actions},
     journal = {Annals of mathematics},
     pages = {1387--1400},
     year = {2010},
     volume = {171},
     number = {2},
     doi = {10.4007/annals.2010.171.1387},
     mrnumber = {2630067},
     zbl = {1201.37007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.171.1387/}
}
TY  - JOUR
AU  - Lewis Phylip Bowen
TI  - A measure-conjugacy invariant for free group actions
JO  - Annals of mathematics
PY  - 2010
SP  - 1387
EP  - 1400
VL  - 171
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.171.1387/
DO  - 10.4007/annals.2010.171.1387
LA  - en
ID  - 10_4007_annals_2010_171_1387
ER  - 
%0 Journal Article
%A Lewis Phylip Bowen
%T A measure-conjugacy invariant for free group actions
%J Annals of mathematics
%D 2010
%P 1387-1400
%V 171
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.171.1387/
%R 10.4007/annals.2010.171.1387
%G en
%F 10_4007_annals_2010_171_1387
Lewis Phylip Bowen. A measure-conjugacy invariant for free group actions. Annals of mathematics, Tome 171 (2010) no. 2, pp. 1387-1400. doi: 10.4007/annals.2010.171.1387

Cité par Sources :