A measure-conjugacy invariant for free group actions
Annals of mathematics, Tome 171 (2010) no. 2, pp. 1387-1400
Cet article a éte moissonné depuis la source Annals of Mathematics website
This paper introduces a new measure-conjugacy invariant for actions of free groups. Using this invariant, it is shown that two Bernoulli shifts over a finitely generated free group are measurably conjugate if and only if their base measures have the same entropy. This answers a question of Ornstein and Weiss.
@article{10_4007_annals_2010_171_1387,
author = {Lewis Phylip Bowen},
title = {A measure-conjugacy invariant for free group actions},
journal = {Annals of mathematics},
pages = {1387--1400},
year = {2010},
volume = {171},
number = {2},
doi = {10.4007/annals.2010.171.1387},
mrnumber = {2630067},
zbl = {1201.37007},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.171.1387/}
}
TY - JOUR AU - Lewis Phylip Bowen TI - A measure-conjugacy invariant for free group actions JO - Annals of mathematics PY - 2010 SP - 1387 EP - 1400 VL - 171 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.171.1387/ DO - 10.4007/annals.2010.171.1387 LA - en ID - 10_4007_annals_2010_171_1387 ER -
Lewis Phylip Bowen. A measure-conjugacy invariant for free group actions. Annals of mathematics, Tome 171 (2010) no. 2, pp. 1387-1400. doi: 10.4007/annals.2010.171.1387
Cité par Sources :