Differentiating maps into $L^1$, and the geometry of $\rm BV$ functions
Annals of mathematics, Tome 171 (2010) no. 2, pp. 1347-1385.

Voir la notice de l'article provenant de la source Annals of Mathematics website

This is one of a series of papers examining the interplay between differentiation theory for Lipschitz maps $X\to V$ and bi-Lipschitz nonembeddability, where $X$ is a metric measure space and $V$ is a Banach space. Here, we consider the case $V=L^1$, where differentiability fails. We establish another kind of differentiability for certain $X$, including $\mathbb{R}^n$ and $\mathbb{H}$, the Heisenberg group with its Carnot-Carathéodory metric. It follows that $\mathbb{H}$ does not bi-Lipschitz embed into $L^1$, as conjectured by J. Lee and A. Naor. When combined with their work, this provides a natural counterexample to the Goemans-Linial conjecture in theoretical computer science; the first such counterexample was found by Khot-Vishnoi [KV05].
DOI : 10.4007/annals.2010.171.1347

Jeff Cheeger 1 ; Bruce Kleiner 1

1 Courant Institute of Mathematical Sciences<br/>251 Mercer Street<br/>New York, NY 10012<br/>United States
@article{10_4007_annals_2010_171_1347,
     author = {Jeff Cheeger and Bruce Kleiner},
     title = {Differentiating maps into $L^1$, and the geometry of $\rm BV$ functions},
     journal = {Annals of mathematics},
     pages = {1347--1385},
     publisher = {mathdoc},
     volume = {171},
     number = {2},
     year = {2010},
     doi = {10.4007/annals.2010.171.1347},
     mrnumber = {2630066},
     zbl = {1194.22009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.171.1347/}
}
TY  - JOUR
AU  - Jeff Cheeger
AU  - Bruce Kleiner
TI  - Differentiating maps into $L^1$, and the geometry of $\rm BV$ functions
JO  - Annals of mathematics
PY  - 2010
SP  - 1347
EP  - 1385
VL  - 171
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.171.1347/
DO  - 10.4007/annals.2010.171.1347
LA  - en
ID  - 10_4007_annals_2010_171_1347
ER  - 
%0 Journal Article
%A Jeff Cheeger
%A Bruce Kleiner
%T Differentiating maps into $L^1$, and the geometry of $\rm BV$ functions
%J Annals of mathematics
%D 2010
%P 1347-1385
%V 171
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.171.1347/
%R 10.4007/annals.2010.171.1347
%G en
%F 10_4007_annals_2010_171_1347
Jeff Cheeger; Bruce Kleiner. Differentiating maps into $L^1$, and the geometry of $\rm BV$ functions. Annals of mathematics, Tome 171 (2010) no. 2, pp. 1347-1385. doi : 10.4007/annals.2010.171.1347. http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.171.1347/

Cité par Sources :