Boundary rigidity and filling volume minimality of metrics close to a flat one
Annals of mathematics, Tome 171 (2010) no. 2, pp. 1183-1211.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We say that a Riemannian manifold $(M, g)$ with a non-empty boundary $\partial M$ is a minimal orientable filling if, for every compact orientable $(\widetilde M,\tilde g)$ with $\partial \widetilde M=\partial M$, the inequality $ d_{\tilde g}(x,y) \ge d_g(x,y)$ for all $x,y\in\partial M$ implies $ \operatorname{vol}(\widetilde M,\tilde g) \ge \operatorname{vol}(M,g) .$ We show that if a metric $g$ on a region $M \subset \mathbf{R}^n$ with a connected boundary is sufficiently $C^2$-close to a Euclidean one, then it is a minimal filling. By studying the equality case $ \operatorname{vol}(\widetilde M,\tilde g) = \operatorname{vol}(M,g)$ we show that if $ d_{\tilde g}(x,y) = d_g(x,y)$ for all $x,y\in\partial M$ then $(M,g)$ is isometric to $(\widetilde M,\tilde g)$. This gives the first known open class of boundary rigid manifolds in dimensions higher than two and makes a step towards a proof of Michel’s conjecture.
DOI : 10.4007/annals.2010.171.1183

Dmitri Burago 1 ; Sergei Ivanov 2

1 Department of Mathematics<br/>Pennsylvania State University<br/>State College, PA 16802
2 V. A. Steklov Mathematical Institute<br/>Russian Academy of Sciences<br/>Fontanka 27<br/>191023 St. Petersburg<br/>Russia
@article{10_4007_annals_2010_171_1183,
     author = {Dmitri Burago and Sergei Ivanov},
     title = {Boundary rigidity and filling volume minimality of metrics close to a flat one},
     journal = {Annals of mathematics},
     pages = {1183--1211},
     publisher = {mathdoc},
     volume = {171},
     number = {2},
     year = {2010},
     doi = {10.4007/annals.2010.171.1183},
     mrnumber = {2630062},
     zbl = {1192.53048},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.171.1183/}
}
TY  - JOUR
AU  - Dmitri Burago
AU  - Sergei Ivanov
TI  - Boundary rigidity and filling volume minimality of metrics close to a flat one
JO  - Annals of mathematics
PY  - 2010
SP  - 1183
EP  - 1211
VL  - 171
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.171.1183/
DO  - 10.4007/annals.2010.171.1183
LA  - en
ID  - 10_4007_annals_2010_171_1183
ER  - 
%0 Journal Article
%A Dmitri Burago
%A Sergei Ivanov
%T Boundary rigidity and filling volume minimality of metrics close to a flat one
%J Annals of mathematics
%D 2010
%P 1183-1211
%V 171
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.171.1183/
%R 10.4007/annals.2010.171.1183
%G en
%F 10_4007_annals_2010_171_1183
Dmitri Burago; Sergei Ivanov. Boundary rigidity and filling volume minimality of metrics close to a flat one. Annals of mathematics, Tome 171 (2010) no. 2, pp. 1183-1211. doi : 10.4007/annals.2010.171.1183. http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.171.1183/

Cité par Sources :