A new upper bound for diagonal Ramsey numbers
Annals of mathematics, Tome 170 (2009) no. 2, pp. 941-960.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove a new upper bound for diagonal two-colour Ramsey numbers, showing that there exists a constant $C$ such that \[r(k+1, k+1) \leq k^{- C {\log k}/{\log \log k}} \textstyle \binom{2k}{k}.\]
DOI : 10.4007/annals.2009.170.941

David Conlon 1

1 Department of Pure Mathematics and Mathematical Statistics<br/>Centre for Mathematical Sciences<br/>University of Cambridge<br/>Wilberforce Road<br/>Cambridge<br/>CB3 0WB<br/>United Kingdom
@article{10_4007_annals_2009_170_941,
     author = {David Conlon},
     title = {A new upper bound for diagonal {Ramsey} numbers},
     journal = {Annals of mathematics},
     pages = {941--960},
     publisher = {mathdoc},
     volume = {170},
     number = {2},
     year = {2009},
     doi = {10.4007/annals.2009.170.941},
     mrnumber = {2552114},
     zbl = {1188.05087},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.941/}
}
TY  - JOUR
AU  - David Conlon
TI  - A new upper bound for diagonal Ramsey numbers
JO  - Annals of mathematics
PY  - 2009
SP  - 941
EP  - 960
VL  - 170
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.941/
DO  - 10.4007/annals.2009.170.941
LA  - en
ID  - 10_4007_annals_2009_170_941
ER  - 
%0 Journal Article
%A David Conlon
%T A new upper bound for diagonal Ramsey numbers
%J Annals of mathematics
%D 2009
%P 941-960
%V 170
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.941/
%R 10.4007/annals.2009.170.941
%G en
%F 10_4007_annals_2009_170_941
David Conlon. A new upper bound for diagonal Ramsey numbers. Annals of mathematics, Tome 170 (2009) no. 2, pp. 941-960. doi : 10.4007/annals.2009.170.941. http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.941/

Cité par Sources :