Split embedding problems over complete domains
Annals of mathematics, Tome 170 (2009) no. 2, pp. 899-914.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove that every finite split embedding problem is solvable over the field $K(\mskip-1.5mu(X_1,\ldots,X_n)\mskip-1.5mu)$ of formal power series in $n \geq 2$ variables over an arbitrary field $K$, as well as over the field $\operatorname{Quot}(A[\mskip-2mu[X_1,\ldots,X_n]\mskip-2mu])$ of formal power series in $n \geq 1$ variables over a Noetherian integrally closed domain $A$. This generalizes a theorem of Harbater and Stevenson, who settled the case $K(\mskip-1.5mu(X_1,X_2)\mskip-1.5mu)$.
DOI : 10.4007/annals.2009.170.899

Elad Paran 1

1 School of Mathematical Sciences<br/>Tel Aviv University<br/>Ramat Aviv<br/>Tel Aviv 69978<br/>Israel
@article{10_4007_annals_2009_170_899,
     author = {Elad Paran},
     title = {Split embedding problems over complete domains},
     journal = {Annals of mathematics},
     pages = {899--914},
     publisher = {mathdoc},
     volume = {170},
     number = {2},
     year = {2009},
     doi = {10.4007/annals.2009.170.899},
     mrnumber = {2552112},
     zbl = {05610434},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.899/}
}
TY  - JOUR
AU  - Elad Paran
TI  - Split embedding problems over complete domains
JO  - Annals of mathematics
PY  - 2009
SP  - 899
EP  - 914
VL  - 170
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.899/
DO  - 10.4007/annals.2009.170.899
LA  - en
ID  - 10_4007_annals_2009_170_899
ER  - 
%0 Journal Article
%A Elad Paran
%T Split embedding problems over complete domains
%J Annals of mathematics
%D 2009
%P 899-914
%V 170
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.899/
%R 10.4007/annals.2009.170.899
%G en
%F 10_4007_annals_2009_170_899
Elad Paran. Split embedding problems over complete domains. Annals of mathematics, Tome 170 (2009) no. 2, pp. 899-914. doi : 10.4007/annals.2009.170.899. http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.899/

Cité par Sources :