The zero locus of an admissible normal function
Annals of mathematics, Tome 170 (2009) no. 2, pp. 883-897.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove that the zero locus of an admissible normal function over an algebraic parameter space $S$ is algebraic in the case where $S$ is a curve.
DOI : 10.4007/annals.2009.170.883

Patrick Brosnan 1 ; Gregory J. Pearlstein 2

1 Department of Mathematics<br/>The University of British Columbia<br/>Room 121, 1984 Mathematics Road<br/>Vancouver, BC V6T 1Z2<br/>Canada
2 Department of Mathematics<br/>Michigan State University<br/>East Lansing, MI 48824<br/>United States
@article{10_4007_annals_2009_170_883,
     author = {Patrick Brosnan and Gregory J. Pearlstein},
     title = {The zero locus of an admissible  normal function},
     journal = {Annals of mathematics},
     pages = {883--897},
     publisher = {mathdoc},
     volume = {170},
     number = {2},
     year = {2009},
     doi = {10.4007/annals.2009.170.883},
     mrnumber = {2552111},
     zbl = {1184.32004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.883/}
}
TY  - JOUR
AU  - Patrick Brosnan
AU  - Gregory J. Pearlstein
TI  - The zero locus of an admissible  normal function
JO  - Annals of mathematics
PY  - 2009
SP  - 883
EP  - 897
VL  - 170
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.883/
DO  - 10.4007/annals.2009.170.883
LA  - en
ID  - 10_4007_annals_2009_170_883
ER  - 
%0 Journal Article
%A Patrick Brosnan
%A Gregory J. Pearlstein
%T The zero locus of an admissible  normal function
%J Annals of mathematics
%D 2009
%P 883-897
%V 170
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.883/
%R 10.4007/annals.2009.170.883
%G en
%F 10_4007_annals_2009_170_883
Patrick Brosnan; Gregory J. Pearlstein. The zero locus of an admissible  normal function. Annals of mathematics, Tome 170 (2009) no. 2, pp. 883-897. doi : 10.4007/annals.2009.170.883. http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.883/

Cité par Sources :