On the shape of Bruhat intervals
Annals of mathematics, Tome 170 (2009) no. 2, pp. 799-817.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Let $(W,S)$ be a crystallographic Coxeter group (this includes all finite and affine Weyl groups), and let $J\subseteq S$. Let $W^J$ denote the set of minimal coset representatives modulo the parabolic subgroup $W_J$. For $w\in W^J$, let $f^{w\smash{,J}}_{i}$ denote the number of elements of length $i$ below $w$ in Bruhat order on $W^J$ (with notation simplified to $f^{w}_{i}$ in the case when $W^J=W$). We show that $$ 0\le i\lt j\le \ell (w)-i \quad\hbox{implies}\quad f^{w\smash{,J}}_{i} \le f^{w\smash{,J}}_{j}. \end{displaymath} Also, the case of equalities $\smashf^w_i = f^w_\ell(w)-i$ for $i=1, \ldots,k$ is characterized in terms of vanishing of coefficients in the Kazhdan-Lusztig polynomial $P_e,w(q)$.
DOI : 10.4007/annals.2009.170.799

Anders Björner  1 ; Torsten Ekedahl 2

1 Department of Mathematics<br/>Royal Institute of Technology<br/>100 44 Stockholm<br/>Sweden
2 Department of Mathematics<br/>Stockholm University<br/>106 91 Stockholm<br/>Sweden
@article{10_4007_annals_2009_170_799,
     author = {Anders Bj\"orner  and Torsten Ekedahl},
     title = {On the shape of {Bruhat} intervals},
     journal = {Annals of mathematics},
     pages = {799--817},
     publisher = {mathdoc},
     volume = {170},
     number = {2},
     year = {2009},
     doi = {10.4007/annals.2009.170.799},
     mrnumber = {2552108},
     zbl = {1226.05268},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.799/}
}
TY  - JOUR
AU  - Anders Björner 
AU  - Torsten Ekedahl
TI  - On the shape of Bruhat intervals
JO  - Annals of mathematics
PY  - 2009
SP  - 799
EP  - 817
VL  - 170
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.799/
DO  - 10.4007/annals.2009.170.799
LA  - en
ID  - 10_4007_annals_2009_170_799
ER  - 
%0 Journal Article
%A Anders Björner 
%A Torsten Ekedahl
%T On the shape of Bruhat intervals
%J Annals of mathematics
%D 2009
%P 799-817
%V 170
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.799/
%R 10.4007/annals.2009.170.799
%G en
%F 10_4007_annals_2009_170_799
Anders Björner ; Torsten Ekedahl. On the shape of Bruhat intervals. Annals of mathematics, Tome 170 (2009) no. 2, pp. 799-817. doi : 10.4007/annals.2009.170.799. http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.799/

Cité par Sources :