The Weil-étale topology for number rings
Annals of mathematics, Tome 170 (2009) no. 2, pp. 657-683.

Voir la notice de l'article provenant de la source Annals of Mathematics website

There should be a Grothendieck topology for an arithmetic scheme $X$ such that the Euler characteristic of the cohomology groups of the constant sheaf $\mathbb Z$ with compact support at infinity gives, up to sign, the leading term of the zeta-function of $X$ at $s = 0$. We construct a topology (the Weil-étale topology) for the ring of integers in a number field whose cohomology groups $H^i(\mathbb Z) $ determine such an Euler characterstic if we restrict to $i\leq 3$.
DOI : 10.4007/annals.2009.170.657

Stephen Lichtenbaum 1

1 Department of Mathematics<br/>Brown University<br/>Box 1917<br/>151 Thayer Street<br/>Providence, RI 02912<br/>United States
@article{10_4007_annals_2009_170_657,
     author = {Stephen Lichtenbaum},
     title = {The {Weil-\'etale} topology for number rings},
     journal = {Annals of mathematics},
     pages = {657--683},
     publisher = {mathdoc},
     volume = {170},
     number = {2},
     year = {2009},
     doi = {10.4007/annals.2009.170.657},
     mrnumber = {2552104},
     zbl = {05610426},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.657/}
}
TY  - JOUR
AU  - Stephen Lichtenbaum
TI  - The Weil-étale topology for number rings
JO  - Annals of mathematics
PY  - 2009
SP  - 657
EP  - 683
VL  - 170
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.657/
DO  - 10.4007/annals.2009.170.657
LA  - en
ID  - 10_4007_annals_2009_170_657
ER  - 
%0 Journal Article
%A Stephen Lichtenbaum
%T The Weil-étale topology for number rings
%J Annals of mathematics
%D 2009
%P 657-683
%V 170
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.657/
%R 10.4007/annals.2009.170.657
%G en
%F 10_4007_annals_2009_170_657
Stephen Lichtenbaum. The Weil-étale topology for number rings. Annals of mathematics, Tome 170 (2009) no. 2, pp. 657-683. doi : 10.4007/annals.2009.170.657. http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.657/

Cité par Sources :