Generalizations of Siegel’s and Picard’s theorems
Annals of mathematics, Tome 170 (2009) no. 2, pp. 609-655.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove new theorems that are higher-dimensional generalizations of the classical theorems of Siegel on integral points on affine curves and of Picard on holomorphic maps from $\mathbb{C}$ to affine curves. These include results on integral points over varying number fields of bounded degree and results on Kobayashi hyperbolicity. We give a number of new conjectures describing, from our point of view, how we expect Siegel’s and Picard’s theorems to optimally generalize to higher dimensions.
DOI : 10.4007/annals.2009.170.609

Aaron Levin 1

1 Centro di Ricerca Matematica Ennio De Giorgi<br/>Scuola Normale Superiore<br/>56100 Pisa<br/>Italy
@article{10_4007_annals_2009_170_609,
     author = {Aaron Levin},
     title = {Generalizations of {Siegel{\textquoteright}s} and {Picard{\textquoteright}s} theorems},
     journal = {Annals of mathematics},
     pages = {609--655},
     publisher = {mathdoc},
     volume = {170},
     number = {2},
     year = {2009},
     doi = {10.4007/annals.2009.170.609},
     mrnumber = {2552103},
     zbl = {05610425},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.609/}
}
TY  - JOUR
AU  - Aaron Levin
TI  - Generalizations of Siegel’s and Picard’s theorems
JO  - Annals of mathematics
PY  - 2009
SP  - 609
EP  - 655
VL  - 170
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.609/
DO  - 10.4007/annals.2009.170.609
LA  - en
ID  - 10_4007_annals_2009_170_609
ER  - 
%0 Journal Article
%A Aaron Levin
%T Generalizations of Siegel’s and Picard’s theorems
%J Annals of mathematics
%D 2009
%P 609-655
%V 170
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.609/
%R 10.4007/annals.2009.170.609
%G en
%F 10_4007_annals_2009_170_609
Aaron Levin. Generalizations of Siegel’s and Picard’s theorems. Annals of mathematics, Tome 170 (2009) no. 2, pp. 609-655. doi : 10.4007/annals.2009.170.609. http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.609/

Cité par Sources :