Subharmonic solutions of Hamiltonian equations on tori
Annals of mathematics, Tome 170 (2009) no. 2, pp. 529-560.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Let the torus $ T^{2n}$ be equipped with the standard symplectic structure and a periodic Hamiltonian $\mathcal{H} \in C^{3}(S^{1}\times T^{2n}, \mathbb{R})$. We look for periodic orbits of the Hamiltonian flow $ \dot{\boldsymbol{u}}(t)=J\nabla\mathcal{H} (t,\boldsymbol(t)). $ A subharmonic solution is a periodic orbit with minimal period an integral multiple $ m $ of the period of $\mathcal{H} $, with $ m>1 $.
DOI : 10.4007/annals.2009.170.529

Nancy Hingston 1

1 Mathematics and Statistics<br/>Science Complex P231<br/>The College of New Jersey<br/>P.O. Box 7718<br/>Ewing, NJ 08628-0718<br/>United States
@article{10_4007_annals_2009_170_529,
     author = {Nancy Hingston},
     title = {Subharmonic solutions of {Hamiltonian} equations on tori},
     journal = {Annals of mathematics},
     pages = {529--560},
     publisher = {mathdoc},
     volume = {170},
     number = {2},
     year = {2009},
     doi = {10.4007/annals.2009.170.529},
     mrnumber = {2552101},
     zbl = {1180.58009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.529/}
}
TY  - JOUR
AU  - Nancy Hingston
TI  - Subharmonic solutions of Hamiltonian equations on tori
JO  - Annals of mathematics
PY  - 2009
SP  - 529
EP  - 560
VL  - 170
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.529/
DO  - 10.4007/annals.2009.170.529
LA  - en
ID  - 10_4007_annals_2009_170_529
ER  - 
%0 Journal Article
%A Nancy Hingston
%T Subharmonic solutions of Hamiltonian equations on tori
%J Annals of mathematics
%D 2009
%P 529-560
%V 170
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.529/
%R 10.4007/annals.2009.170.529
%G en
%F 10_4007_annals_2009_170_529
Nancy Hingston. Subharmonic solutions of Hamiltonian equations on tori. Annals of mathematics, Tome 170 (2009) no. 2, pp. 529-560. doi : 10.4007/annals.2009.170.529. http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.529/

Cité par Sources :