Fitting a $C^m$-smooth function to data, III
Annals of mathematics, Tome 170 (2009) no. 1, pp. 427-441.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Fix $m, n\geq 1$. Given an $N$-point set $E \subset {\mathbb R}^n$, we exhibit a list of $O(N)$ subsets $S_1,S_2,\ldots,S_L\subset E$, each containing $O(1)$ points, such that the following holds: Let $f: E\to {\mathbb R}^n$. Suppose that, for each $\ell=1,\ldots,L$, there exists $F_\ell \in C^m(\mathbb R^n)$ with norm $\le 1$, agreeing with $f$ on $S_\ell$. Then there exists $F\in C^m(\mathbb R^n)$, with norm $O(1)$, agreeing with $f$ on $E$.
We give an application to the problem of discarding outliers from the set $E$.
DOI : 10.4007/annals.2009.170.427

Charles Fefferman 1

1 Princeton University<br/>Department of Mathematics<br/>Princeton, NJ 08544<br/>United States
@article{10_4007_annals_2009_170_427,
     author = {Charles Fefferman},
     title = {Fitting a $C^m$-smooth function to data, {III}},
     journal = {Annals of mathematics},
     pages = {427--441},
     publisher = {mathdoc},
     volume = {170},
     number = {1},
     year = {2009},
     doi = {10.4007/annals.2009.170.427},
     mrnumber = {2521121},
     zbl = {1175.65025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.427/}
}
TY  - JOUR
AU  - Charles Fefferman
TI  - Fitting a $C^m$-smooth function to data, III
JO  - Annals of mathematics
PY  - 2009
SP  - 427
EP  - 441
VL  - 170
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.427/
DO  - 10.4007/annals.2009.170.427
LA  - en
ID  - 10_4007_annals_2009_170_427
ER  - 
%0 Journal Article
%A Charles Fefferman
%T Fitting a $C^m$-smooth function to data, III
%J Annals of mathematics
%D 2009
%P 427-441
%V 170
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.427/
%R 10.4007/annals.2009.170.427
%G en
%F 10_4007_annals_2009_170_427
Charles Fefferman. Fitting a $C^m$-smooth function to data, III. Annals of mathematics, Tome 170 (2009) no. 1, pp. 427-441. doi : 10.4007/annals.2009.170.427. http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.427/

Cité par Sources :