The Ten Martini Problem
Annals of mathematics, Tome 170 (2009) no. 1, pp. 303-342.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove the conjecture (known as the “Ten Martini Problem” after Kac and Simon) that the spectrum of the almost Mathieu operator is a Cantor set for all nonzero values of the coupling and all irrational frequencies.
DOI : 10.4007/annals.2009.170.303

Artur Avila 1 ; Svetlana Jitomirskaya 2

1 IMPA<br/>Estrada Dona Castorina 110<br/>Jardim Botânico<br/>22460-320 Rio de Janeiro, RJ<br/>Brazil
2 Department of Mathematics<br/>340 Rowland Hall<br/>University of California<br/>Irvine, CA 92697-3875<br/>United States
@article{10_4007_annals_2009_170_303,
     author = {Artur Avila and Svetlana Jitomirskaya},
     title = {The {Ten} {Martini} {Problem}},
     journal = {Annals of mathematics},
     pages = {303--342},
     publisher = {mathdoc},
     volume = {170},
     number = {1},
     year = {2009},
     doi = {10.4007/annals.2009.170.303},
     mrnumber = {2521117

},
     zbl = {1166.47031},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.303/}
}
TY  - JOUR
AU  - Artur Avila
AU  - Svetlana Jitomirskaya
TI  - The Ten Martini Problem
JO  - Annals of mathematics
PY  - 2009
SP  - 303
EP  - 342
VL  - 170
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.303/
DO  - 10.4007/annals.2009.170.303
LA  - en
ID  - 10_4007_annals_2009_170_303
ER  - 
%0 Journal Article
%A Artur Avila
%A Svetlana Jitomirskaya
%T The Ten Martini Problem
%J Annals of mathematics
%D 2009
%P 303-342
%V 170
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.303/
%R 10.4007/annals.2009.170.303
%G en
%F 10_4007_annals_2009_170_303
Artur Avila; Svetlana Jitomirskaya. The Ten Martini Problem. Annals of mathematics, Tome 170 (2009) no. 1, pp. 303-342. doi : 10.4007/annals.2009.170.303. http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.303/

Cité par Sources :