Subgroups of direct products of limit groups
Annals of mathematics, Tome 170 (2009) no. 3, pp. 1447-1467.

Voir la notice de l'article provenant de la source Annals of Mathematics website

SelaIf
$\Gamma_1,\dots,\Gamma_n$
are limit groups and
$S\subset\Gamma_1\times\dots\times\Gamma_n$
is of type
${\rm FP}_n(\mathbb Q)$
then
$S$
contains a subgroup of finite index that is itself a direct product of at most
$n$
limit groups. This answers a question of Sela.
DOI : 10.4007/annals.2009.170.1447

Martin R. Bridson 1 ; James Howie 2 ; Charles F. Miller III 3 ; Hamish Short 4

1 Mathematical Institute<br/>24-29 St Giles’<br/>Oxford OX1 3LB<br/>United Kingdom
2 Department of Mathematics and Maxwell Institute for Mathematical Sciences<br/>Heriot-Watt University<br/>Edinburgh EH14 4AS<br/>United Kingdom
3 Department of Mathematics and Statistics<br/>University of Melbourne<br/>Melbourne 3010<br/>Australia
4 L.A.T.P., U.M.R. 6632<br/>Centre de Mathématiques et d’Informatique<br/>39 Rue Joliot-Curie<br/>Université de Provence<br/>13453 Marseille cedex 13<br/>France
@article{10_4007_annals_2009_170_1447,
     author = {Martin R. Bridson and James Howie and Charles~F. Miller~III and Hamish Short},
     title = {Subgroups of direct products of limit groups},
     journal = {Annals of mathematics},
     pages = {1447--1467},
     publisher = {mathdoc},
     volume = {170},
     number = {3},
     year = {2009},
     doi = {10.4007/annals.2009.170.1447},
     mrnumber = {2600879},
     zbl = {1196.20047},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.1447/}
}
TY  - JOUR
AU  - Martin R. Bridson
AU  - James Howie
AU  - Charles F. Miller III
AU  - Hamish Short
TI  - Subgroups of direct products of limit groups
JO  - Annals of mathematics
PY  - 2009
SP  - 1447
EP  - 1467
VL  - 170
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.1447/
DO  - 10.4007/annals.2009.170.1447
LA  - en
ID  - 10_4007_annals_2009_170_1447
ER  - 
%0 Journal Article
%A Martin R. Bridson
%A James Howie
%A Charles F. Miller III
%A Hamish Short
%T Subgroups of direct products of limit groups
%J Annals of mathematics
%D 2009
%P 1447-1467
%V 170
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.1447/
%R 10.4007/annals.2009.170.1447
%G en
%F 10_4007_annals_2009_170_1447
Martin R. Bridson; James Howie; Charles F. Miller III; Hamish Short. Subgroups of direct products of limit groups. Annals of mathematics, Tome 170 (2009) no. 3, pp. 1447-1467. doi : 10.4007/annals.2009.170.1447. http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.1447/

Cité par Sources :