The Euler equations as a differential inclusion
Annals of mathematics, Tome 170 (2009) no. 3, pp. 1417-1436.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We propose a new point of view on weak solutions of the Euler equations, describing the motion of an ideal incompressible fluid in $\mathbb{R}^n$ with $n\geq 2$. We give a reformulation of the Euler equations as a differential inclusion, and in this way we obtain transparent proofs of several celebrated results of V. Scheffer and A. Shnirelman concerning the non-uniqueness of weak solutions and the existence of energy-decreasing solutions. Our results are stronger because they work in any dimension and yield bounded velocity and pressure.
DOI : 10.4007/annals.2009.170.1417

Camillo De Lellis 1 ; László Székelyhidi Jr. 2

1 Institut für Mathematik<br/>Universität Zürich<br/>CH-8057 Zürich<br/>Switzerland
2 Departement Mathematik<br/>ETH Zürich<br/>CH-8092 Zürich<br/>Switzerland
@article{10_4007_annals_2009_170_1417,
     author = {Camillo De Lellis and L\'aszl\'o Sz\'ekelyhidi Jr.},
     title = {The {Euler} equations as a differential inclusion},
     journal = {Annals of mathematics},
     pages = {1417--1436},
     publisher = {mathdoc},
     volume = {170},
     number = {3},
     year = {2009},
     doi = {10.4007/annals.2009.170.1417},
     mrnumber = {2600877},
     zbl = {05710190},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.1417/}
}
TY  - JOUR
AU  - Camillo De Lellis
AU  - László Székelyhidi Jr.
TI  - The Euler equations as a differential inclusion
JO  - Annals of mathematics
PY  - 2009
SP  - 1417
EP  - 1436
VL  - 170
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.1417/
DO  - 10.4007/annals.2009.170.1417
LA  - en
ID  - 10_4007_annals_2009_170_1417
ER  - 
%0 Journal Article
%A Camillo De Lellis
%A László Székelyhidi Jr.
%T The Euler equations as a differential inclusion
%J Annals of mathematics
%D 2009
%P 1417-1436
%V 170
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.1417/
%R 10.4007/annals.2009.170.1417
%G en
%F 10_4007_annals_2009_170_1417
Camillo De Lellis; László Székelyhidi Jr. The Euler equations as a differential inclusion. Annals of mathematics, Tome 170 (2009) no. 3, pp. 1417-1436. doi : 10.4007/annals.2009.170.1417. http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.1417/

Cité par Sources :