Donaldson-Thomas type invariants via microlocal geometry
Annals of mathematics, Tome 170 (2009) no. 3, pp. 1307-1338.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We prove that Donaldson-Thomas type invariants are equal to weighted Euler characteristics of their moduli spaces. In particular, such invariants depend only on the scheme structure of the moduli space, not the symmetric obstruction theory used to define them. We also introduce new invariants generalizing Donaldson-Thomas type invariants to moduli problems with open moduli space. These are useful for computing Donaldson-Thomas type invariants over stratifications.
DOI : 10.4007/annals.2009.170.1307

Kai Behrend 1

1 Department of Mathematics<br/>University of British Columbia<br/>Vancouver, BC  V6T 1Z2<br/>Canada
@article{10_4007_annals_2009_170_1307,
     author = {Kai Behrend},
     title = {Donaldson-Thomas type invariants via microlocal geometry},
     journal = {Annals of mathematics},
     pages = {1307--1338},
     publisher = {mathdoc},
     volume = {170},
     number = {3},
     year = {2009},
     doi = {10.4007/annals.2009.170.1307},
     mrnumber = {2600874},
     zbl = {1191.14050},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.1307/}
}
TY  - JOUR
AU  - Kai Behrend
TI  - Donaldson-Thomas type invariants via microlocal geometry
JO  - Annals of mathematics
PY  - 2009
SP  - 1307
EP  - 1338
VL  - 170
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.1307/
DO  - 10.4007/annals.2009.170.1307
LA  - en
ID  - 10_4007_annals_2009_170_1307
ER  - 
%0 Journal Article
%A Kai Behrend
%T Donaldson-Thomas type invariants via microlocal geometry
%J Annals of mathematics
%D 2009
%P 1307-1338
%V 170
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.1307/
%R 10.4007/annals.2009.170.1307
%G en
%F 10_4007_annals_2009_170_1307
Kai Behrend. Donaldson-Thomas type invariants via microlocal geometry. Annals of mathematics, Tome 170 (2009) no. 3, pp. 1307-1338. doi : 10.4007/annals.2009.170.1307. http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.1307/

Cité par Sources :