Bounds on Faltings’s delta function through covers
Annals of mathematics, Tome 170 (2009) no. 1, pp. 1-43.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Let $X$ be a compact Riemann surface of genus $g_{X}\geq1$. In 1984, G. Faltings introduced a new invariant $\delta_{\operatorname{Fal}}(X)$ associated to $X$. In this paper we give explicit bounds for $\delta_{\operatorname{Fal}}(X)$ in terms of fundamental differential geometric invariants arising from $X$, when $g_{X}>1$. As an application, we are able to give bounds for Faltings’s delta function for the family of modular curves $X_{0}(N)$ in terms of the genus only. In combination with work of A. Abbes, P. Michel and E. Ullmo, this leads to an asymptotic formula for the Faltings height of the Jacobian $J_{0}(N)$ associated to $X_{0}(N)$.
DOI : 10.4007/annals.2009.170.1

Jay Jorgenson 1 ; Jürg Kramer 2

1 Department of Mathematics<br/>City College of New York<br/>Convent Avenue at 138th Street<br/>New York, NY 10031<br/>United States
2 Institut für Mathematik<br/>Humboldt-Universität zu Berlin<br/>Unter den Linden 6<br/>D-10099 Berlin<br/>Germany
@article{10_4007_annals_2009_170_1,
     author = {Jay Jorgenson and J\"urg Kramer},
     title = {Bounds on {Faltings{\textquoteright}s} delta function through covers},
     journal = {Annals of mathematics},
     pages = {1--43},
     publisher = {mathdoc},
     volume = {170},
     number = {1},
     year = {2009},
     doi = {10.4007/annals.2009.170.1},
     mrnumber = {2521110},
     zbl = {1169.14020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.1/}
}
TY  - JOUR
AU  - Jay Jorgenson
AU  - Jürg Kramer
TI  - Bounds on Faltings’s delta function through covers
JO  - Annals of mathematics
PY  - 2009
SP  - 1
EP  - 43
VL  - 170
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.1/
DO  - 10.4007/annals.2009.170.1
LA  - en
ID  - 10_4007_annals_2009_170_1
ER  - 
%0 Journal Article
%A Jay Jorgenson
%A Jürg Kramer
%T Bounds on Faltings’s delta function through covers
%J Annals of mathematics
%D 2009
%P 1-43
%V 170
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.1/
%R 10.4007/annals.2009.170.1
%G en
%F 10_4007_annals_2009_170_1
Jay Jorgenson; Jürg Kramer. Bounds on Faltings’s delta function through covers. Annals of mathematics, Tome 170 (2009) no. 1, pp. 1-43. doi : 10.4007/annals.2009.170.1. http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.1/

Cité par Sources :