Ricci curvature for metric-measure spaces via optimal transport
Annals of mathematics, Tome 169 (2009) no. 3, pp. 903-991.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We define a notion of a measured length space $X$ having nonnegative $N$-Ricci curvature, for $N \in [1, \infty)$, or having $\infty$-Ricci curvature bounded below by $K$, for $K \in \mathbb{R}$. The definitions are in terms of the displacement convexity of certain functions on the associated Wasserstein metric space $P_2(X)$ of probability measures. We show that these properties are preserved under measured Gromov-Hausdorff limits. We give geometric and analytic consequences.
DOI : 10.4007/annals.2009.169.903

John Lott 1 ; Cedric Villani 2

1 Department of Mathematics<br/>University of Michigan<br/>Ann Arbor, MI 48109<br/>United States
2 UMPA (UMR CNRS 5669)<br/>École Normale Supérieure de Lyon<br/>69364 Lyon<br/>France
@article{10_4007_annals_2009_169_903,
     author = {John Lott and Cedric Villani},
     title = {Ricci curvature for metric-measure spaces via optimal transport},
     journal = {Annals of mathematics},
     pages = {903--991},
     publisher = {mathdoc},
     volume = {169},
     number = {3},
     year = {2009},
     doi = {10.4007/annals.2009.169.903},
     mrnumber = {2480619},
     zbl = {1178.53038},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.169.903/}
}
TY  - JOUR
AU  - John Lott
AU  - Cedric Villani
TI  - Ricci curvature for metric-measure spaces via optimal transport
JO  - Annals of mathematics
PY  - 2009
SP  - 903
EP  - 991
VL  - 169
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.169.903/
DO  - 10.4007/annals.2009.169.903
LA  - en
ID  - 10_4007_annals_2009_169_903
ER  - 
%0 Journal Article
%A John Lott
%A Cedric Villani
%T Ricci curvature for metric-measure spaces via optimal transport
%J Annals of mathematics
%D 2009
%P 903-991
%V 169
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.169.903/
%R 10.4007/annals.2009.169.903
%G en
%F 10_4007_annals_2009_169_903
John Lott; Cedric Villani. Ricci curvature for metric-measure spaces via optimal transport. Annals of mathematics, Tome 169 (2009) no. 3, pp. 903-991. doi : 10.4007/annals.2009.169.903. http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.169.903/

Cité par Sources :