Existence of Engel structures
Annals of mathematics, Tome 169 (2009) no. 1, pp. 79-137.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We develop a construction of Engel structures on $4$-manifolds based on decompositions of manifolds into round handles. This allows us to show that all parallelizable $4$-manifolds admit an Engel structure. We also show that, given two Engel manifolds $M_1,M_2$ satisfying a certain condition on the characteristic foliations, there is an Engel structure on $M_1\# M_2\# (S^2\times S^2)$ which is closely related to the original Engel structures.
DOI : 10.4007/annals.2009.169.79

Thomas Vogel 1

1 Department of Mathematics<br/>Ludwig-Maximilians University<br/>80333 Munich<br/>Germany
@article{10_4007_annals_2009_169_79,
     author = {Thomas Vogel},
     title = {Existence of {Engel} structures},
     journal = {Annals of mathematics},
     pages = {79--137},
     publisher = {mathdoc},
     volume = {169},
     number = {1},
     year = {2009},
     doi = {10.4007/annals.2009.169.79},
     mrnumber = {2480602},
     zbl = {1195.58005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.169.79/}
}
TY  - JOUR
AU  - Thomas Vogel
TI  - Existence of Engel structures
JO  - Annals of mathematics
PY  - 2009
SP  - 79
EP  - 137
VL  - 169
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.169.79/
DO  - 10.4007/annals.2009.169.79
LA  - en
ID  - 10_4007_annals_2009_169_79
ER  - 
%0 Journal Article
%A Thomas Vogel
%T Existence of Engel structures
%J Annals of mathematics
%D 2009
%P 79-137
%V 169
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.169.79/
%R 10.4007/annals.2009.169.79
%G en
%F 10_4007_annals_2009_169_79
Thomas Vogel. Existence of Engel structures. Annals of mathematics, Tome 169 (2009) no. 1, pp. 79-137. doi : 10.4007/annals.2009.169.79. http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.169.79/

Cité par Sources :