Inverse Littlewood–Offord theorems and the condition number of random discrete matrices
Annals of mathematics, Tome 169 (2009) no. 2, pp. 595-632.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Consider a random sum $\eta_1 v_1 + …+ \eta_n v_n$, where $\eta_1, \dots,\eta_n$ are independently and identically distributed (i.i.d.) random signs and $v_1, \dots,v_n$ are integers. The Littlewood-Offord problem asks to maximize concentration probabilities such as $\Bbb{P}( \eta_1 v_1 + …+ \eta_n v_n = 0)$ subject to various hypotheses on $v_1, \dots,v_n$. In this paper we develop an inverse Littlewood-Offord theory (somewhat in the spirit of Freiman’s inverse theory in additive combinatorics), which starts with the hypothesis that a concentration probability is large, and concludes that almost all of the $v_1, \dots,v_n$ are efficiently contained in a generalized arithmetic progression. As an application we give a new bound on the magnitude of the least singular value of a random Bernoulli matrix, which in turn provides upper tail estimates on the condition number.
DOI : 10.4007/annals.2009.169.595

Terence Tao 1 ; Van H. Vu 2

1 Department of Mathematics <br/>University of California<br/>Los Angeles, CA 90095<br/>United States
2 Department of Mathematics<br/>Rutgers University<br/>Piscataway, NJ 08854<br/>United States
@article{10_4007_annals_2009_169_595,
     author = {Terence Tao and Van H. Vu},
     title = {Inverse {Littlewood{\textendash}Offord} theorems and the condition number of random discrete matrices},
     journal = {Annals of mathematics},
     pages = {595--632},
     publisher = {mathdoc},
     volume = {169},
     number = {2},
     year = {2009},
     doi = {10.4007/annals.2009.169.595},
     mrnumber = {2480613},
     zbl = {05578752},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.169.595/}
}
TY  - JOUR
AU  - Terence Tao
AU  - Van H. Vu
TI  - Inverse Littlewood–Offord theorems and the condition number of random discrete matrices
JO  - Annals of mathematics
PY  - 2009
SP  - 595
EP  - 632
VL  - 169
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.169.595/
DO  - 10.4007/annals.2009.169.595
LA  - en
ID  - 10_4007_annals_2009_169_595
ER  - 
%0 Journal Article
%A Terence Tao
%A Van H. Vu
%T Inverse Littlewood–Offord theorems and the condition number of random discrete matrices
%J Annals of mathematics
%D 2009
%P 595-632
%V 169
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.169.595/
%R 10.4007/annals.2009.169.595
%G en
%F 10_4007_annals_2009_169_595
Terence Tao; Van H. Vu. Inverse Littlewood–Offord theorems and the condition number of random discrete matrices. Annals of mathematics, Tome 169 (2009) no. 2, pp. 595-632. doi : 10.4007/annals.2009.169.595. http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.169.595/

Cité par Sources :