Nontangential limits in $\mathcal{P}^t(\mu)$-spaces and the index of invariant subgroups
Annals of mathematics, Tome 169 (2009) no. 2, pp. 449-490.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Let $\mu$ be a finite positive measure on the closed disk $\overline{\mathbb D}$ in the complex plane, let $1 \le t < \infty$, and let $P^t(\mu)$ denote the closure of the analytic polynomials in $L^t(\mu)$. We suppose that $\mathbb D$ is the set of analytic bounded point evaluations for $P^t(\mu)$, and that $P^t(\mu)$ contains no nontrivial characteristic functions. It is then known that the restriction of $\mu$ to $\partial \mathbb D$ must be of the form $h|dz|$. We prove that every function $f \in P^t(\mu)$ has nontangential limits at $h|dz|$-almost every point of $\partial \mathbb D$, and the resulting boundary function agrees with $f$ as an element of $L^t(h|dz|)$.
DOI : 10.4007/annals.2009.169.449

Alexandru Aleman 1 ; Stefan Richter 2 ; Carl Sundberg 2

1 Center for Mathematical Sciences<br/>Lund University<br/>22100 Lund<br/>Sweden
2 Department of Mathematics<br/>University of Tennessee<br/>Knoxville, TN 37996<br/>United States
@article{10_4007_annals_2009_169_449,
     author = {Alexandru Aleman and Stefan Richter and Carl Sundberg},
     title = {Nontangential limits in $\mathcal{P}^t(\mu)$-spaces and the index of invariant subgroups},
     journal = {Annals of mathematics},
     pages = {449--490},
     publisher = {mathdoc},
     volume = {169},
     number = {2},
     year = {2009},
     doi = {10.4007/annals.2009.169.449},
     mrnumber = {2480609},
     zbl = {1179.46020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.169.449/}
}
TY  - JOUR
AU  - Alexandru Aleman
AU  - Stefan Richter
AU  - Carl Sundberg
TI  - Nontangential limits in $\mathcal{P}^t(\mu)$-spaces and the index of invariant subgroups
JO  - Annals of mathematics
PY  - 2009
SP  - 449
EP  - 490
VL  - 169
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.169.449/
DO  - 10.4007/annals.2009.169.449
LA  - en
ID  - 10_4007_annals_2009_169_449
ER  - 
%0 Journal Article
%A Alexandru Aleman
%A Stefan Richter
%A Carl Sundberg
%T Nontangential limits in $\mathcal{P}^t(\mu)$-spaces and the index of invariant subgroups
%J Annals of mathematics
%D 2009
%P 449-490
%V 169
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.169.449/
%R 10.4007/annals.2009.169.449
%G en
%F 10_4007_annals_2009_169_449
Alexandru Aleman; Stefan Richter; Carl Sundberg. Nontangential limits in $\mathcal{P}^t(\mu)$-spaces and the index of invariant subgroups. Annals of mathematics, Tome 169 (2009) no. 2, pp. 449-490. doi : 10.4007/annals.2009.169.449. http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.169.449/

Cité par Sources :