Regularity of flat level sets in phase transitions
Annals of mathematics, Tome 169 (2009) no. 1, pp. 41-78 Cet article a éte moissonné depuis la source Annals of Mathematics website

Voir la notice de l'article

We consider local minimizers of the Ginzburg-Landau energy functional \[\int \frac{1}{2}|\nabla u|^2 + \frac{1}{4}(1-u^2)^2dx\] and prove that, if the $0$ level set is included in a flat cylinder then, in the interior, it is included in a flatter cylinder. As a consequence we prove a conjecture of De Giorgi which states that level sets of global solutions of \[\triangle u=u^3-u\] such that \[\quad |u|\le 1, \quad \partial_n u>0, \quad \lim_{x_n \to \pm \infty}u(x’,x_n)=\pm 1\] are hyperplanes in dimension $n \le 8$.

DOI : 10.4007/annals.2009.169.41

Ovidiu Savin 1

1 Department of Mathematics<br/>Columbia University<br/>New York, NY 10027<br/>United States
@article{10_4007_annals_2009_169_41,
     author = {Ovidiu Savin},
     title = {Regularity of flat level sets in phase transitions},
     journal = {Annals of mathematics},
     pages = {41--78},
     year = {2009},
     volume = {169},
     number = {1},
     doi = {10.4007/annals.2009.169.41},
     mrnumber = {2480601},
     zbl = {1180.35499},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.169.41/}
}
TY  - JOUR
AU  - Ovidiu Savin
TI  - Regularity of flat level sets in phase transitions
JO  - Annals of mathematics
PY  - 2009
SP  - 41
EP  - 78
VL  - 169
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.169.41/
DO  - 10.4007/annals.2009.169.41
LA  - en
ID  - 10_4007_annals_2009_169_41
ER  - 
%0 Journal Article
%A Ovidiu Savin
%T Regularity of flat level sets in phase transitions
%J Annals of mathematics
%D 2009
%P 41-78
%V 169
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.169.41/
%R 10.4007/annals.2009.169.41
%G en
%F 10_4007_annals_2009_169_41
Ovidiu Savin. Regularity of flat level sets in phase transitions. Annals of mathematics, Tome 169 (2009) no. 1, pp. 41-78. doi: 10.4007/annals.2009.169.41

Cité par Sources :