Fitting a $C^m$-smooth function to data, I
Annals of mathematics, Tome 169 (2009) no. 1, pp. 315-346.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Suppose we are given a finite subset $E \subset \mathbb{R}^n$ and a function $f: E \rightarrow \mathbb{R}$. How to extend $f$ to a $C^m$ function $F: \mathbb{R}^n \rightarrow \mathbb{R}$ with $C^m$ norm of the smallest possible order of magnitude? In this paper and in [20] we tackle this question from the perspective of theoretical computer science. We exhibit algorithms for constructing such an extension function $F$, and for computing the order of magnitude of its $C^m$ norm. The running time of our algorithms is never more than $C N \log N$, where $N$ is the cardinality of $E$ and $C$ is a constant depending only on $m$ and $n$.
DOI : 10.4007/annals.2009.169.315

Charles Fefferman 1 ; Bo'az Klartag 2

1 Department of Mathematics<br/>Princeton University<br/>Princeton, NJ 08544<br/>United States
2 School of Mathematical Sciences<br/>Tel Aviv University<br/>Tel Aviv 69978<br/>Israel
@article{10_4007_annals_2009_169_315,
     author = {Charles Fefferman and Bo'az Klartag},
     title = {Fitting a $C^m$-smooth function to data, {I}},
     journal = {Annals of mathematics},
     pages = {315--346},
     publisher = {mathdoc},
     volume = {169},
     number = {1},
     year = {2009},
     doi = {10.4007/annals.2009.169.315},
     mrnumber = {2480607},
     zbl = {1175.41001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.169.315/}
}
TY  - JOUR
AU  - Charles Fefferman
AU  - Bo'az Klartag
TI  - Fitting a $C^m$-smooth function to data, I
JO  - Annals of mathematics
PY  - 2009
SP  - 315
EP  - 346
VL  - 169
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.169.315/
DO  - 10.4007/annals.2009.169.315
LA  - en
ID  - 10_4007_annals_2009_169_315
ER  - 
%0 Journal Article
%A Charles Fefferman
%A Bo'az Klartag
%T Fitting a $C^m$-smooth function to data, I
%J Annals of mathematics
%D 2009
%P 315-346
%V 169
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.169.315/
%R 10.4007/annals.2009.169.315
%G en
%F 10_4007_annals_2009_169_315
Charles Fefferman; Bo'az Klartag. Fitting a $C^m$-smooth function to data, I. Annals of mathematics, Tome 169 (2009) no. 1, pp. 315-346. doi : 10.4007/annals.2009.169.315. http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.169.315/

Cité par Sources :