The `Harder-Narasimhan trace’ and unitarity of the KZ/Hitchin connection: genus 0
Annals of mathematics, Tome 169 (2009) no. 1, pp. 1-39.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Let a reductive group $G$ act on a projective variety $\mathcal{X}_+$, and suppose given a lift of the action to an ample line bundle $\hat{\theta}$. By definition, all $G$-invariant sections of $\hat{\theta}$ vanish on the nonsemistable locus $\mathcal{X}_+^{nss}$. Taking an appropriate normal derivative defines a map $H^0(\mathcal{X}_+,\hat{\theta})^G \to H^0(S_{\mu},\mathcal{V}_{\mu})^G$, where $\mathcal{V}_{\mu}$ is a $G-$vector bundle on a $G-$variety $S_{\mu}$. We call this the Harder-Narasimhan trace. Applying this to the Geometric Invariant Theory construction of the moduli space of parabolic bundles on a curve, we discover generalisations of “Coulomb-gas representations”, which map conformal blocks to hypergeometric local systems. In this paper we prove the unitarity of the KZ/Hitchin connection (in the genus zero, rank two, case) by proving that the above map lands in a unitary factor of the hypergeometric system. (An ingredient in the proof is a lower bound on the degree of polynomials vanishing on partial diagonals.) This elucidates the work of K. Gawedzki.
DOI : 10.4007/annals.2009.169.1

Trivandrum Ramakrishnan Ramadas 1

1 Mathematics Section<br/>Salam ICTP<br/>34151 Trieste<br/>Italy
@article{10_4007_annals_2009_169_1,
     author = {Trivandrum Ramakrishnan Ramadas},
     title = {The {`Harder-Narasimhan} trace{\textquoteright} and unitarity of the {KZ/Hitchin} connection: genus 0},
     journal = {Annals of mathematics},
     pages = {1--39},
     publisher = {mathdoc},
     volume = {169},
     number = {1},
     year = {2009},
     doi = {10.4007/annals.2009.169.1},
     mrnumber = {2480600},
     zbl = {1167.32011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.169.1/}
}
TY  - JOUR
AU  - Trivandrum Ramakrishnan Ramadas
TI  - The `Harder-Narasimhan trace’ and unitarity of the KZ/Hitchin connection: genus 0
JO  - Annals of mathematics
PY  - 2009
SP  - 1
EP  - 39
VL  - 169
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.169.1/
DO  - 10.4007/annals.2009.169.1
LA  - en
ID  - 10_4007_annals_2009_169_1
ER  - 
%0 Journal Article
%A Trivandrum Ramakrishnan Ramadas
%T The `Harder-Narasimhan trace’ and unitarity of the KZ/Hitchin connection: genus 0
%J Annals of mathematics
%D 2009
%P 1-39
%V 169
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.169.1/
%R 10.4007/annals.2009.169.1
%G en
%F 10_4007_annals_2009_169_1
Trivandrum Ramakrishnan Ramadas. The `Harder-Narasimhan trace’ and unitarity of the KZ/Hitchin connection: genus 0. Annals of mathematics, Tome 169 (2009) no. 1, pp. 1-39. doi : 10.4007/annals.2009.169.1. http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.169.1/

Cité par Sources :