A counterexample to the strong version of Freedman’s conjecture
Annals of mathematics, Tome 168 (2008) no. 2, pp. 675-693.

Voir la notice de l'article provenant de la source Annals of Mathematics website

A long-standing conjecture due to Michael Freedman asserts that the 4-dimensional topological surgery conjecture fails for non-abelian free groups, or equivalently that a family of canonical examples of links (the generalized Borromean rings) are not $A-B$ slice. A stronger version of the conjecture, that the Borromean rings are not even weakly $A-B$ slice, where one drops the equivariant aspect of the problem, has been the main focus in the search for an obstruction to surgery. We show that the Borromean rings, and more generally all links with trivial linking numbers, are in fact weakly $A-B$ slice. This result shows the lack of a non-abelian extension of Alexander duality in dimension $4$, and of an analogue of Milnor’s theory of link homotopy for general decompositions of the $4$-ball.
DOI : 10.4007/annals.2008.168.675

Vyacheslav S. Krushkal 1

1 Department of Mathematics<br/>University of Virginia<br/>Charlottesville, VA 22904<br/>United States
@article{10_4007_annals_2008_168_675,
     author = {Vyacheslav S. Krushkal},
     title = {A counterexample to the strong version of {Freedman{\textquoteright}s} conjecture},
     journal = {Annals of mathematics},
     pages = {675--693},
     publisher = {mathdoc},
     volume = {168},
     number = {2},
     year = {2008},
     doi = {10.4007/annals.2008.168.675},
     mrnumber = {2434888},
     zbl = {1176.57025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.168.675/}
}
TY  - JOUR
AU  - Vyacheslav S. Krushkal
TI  - A counterexample to the strong version of Freedman’s conjecture
JO  - Annals of mathematics
PY  - 2008
SP  - 675
EP  - 693
VL  - 168
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.168.675/
DO  - 10.4007/annals.2008.168.675
LA  - en
ID  - 10_4007_annals_2008_168_675
ER  - 
%0 Journal Article
%A Vyacheslav S. Krushkal
%T A counterexample to the strong version of Freedman’s conjecture
%J Annals of mathematics
%D 2008
%P 675-693
%V 168
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.168.675/
%R 10.4007/annals.2008.168.675
%G en
%F 10_4007_annals_2008_168_675
Vyacheslav S. Krushkal. A counterexample to the strong version of Freedman’s conjecture. Annals of mathematics, Tome 168 (2008) no. 2, pp. 675-693. doi : 10.4007/annals.2008.168.675. http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.168.675/

Cité par Sources :