The distribution of integers with a divisor in a given interval
Annals of mathematics, Tome 168 (2008) no. 2, pp. 367-433.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We determine the order of magnitude of $H(x,y,z)$, the number of integers $n\le x$ having a divisor in $(y,z]$, for all $x,y$ and $z$. We also study $H_r(x,y,z)$, the number of integers $n\le x$ having exactly $r$ divisors in $(y,z]$. When $r=1$ we establish the order of magnitude of $H_1(x,y,z)$ for all $x,y,z$ satisfying $z\le x^{1/2-\varepsilon}$. For every $r\ge 2$, $C>1$ and $\varepsilon>0$, we determine the order of magnitude of $H_r(x,y,z)$ uniformly for $y$ large and $y+y/(\log y)^{\log 4 -1 – \varepsilon} \le z \le \min(y^{C},x^{1/2-\varepsilon})$. As a consequence of these bounds, we settle a 1960 conjecture of Erdős and some conjectures of Tenenbaum. One key element of the proofs is a new result on the distribution of uniform order statistics.
DOI : 10.4007/annals.2008.168.367

Kevin Ford 1

1 Department of Mathematics<br/>The University of Illinois at Urbana-Champaign<br/>Urbana, IL 61801<br/>United States
@article{10_4007_annals_2008_168_367,
     author = {Kevin Ford},
     title = {The distribution of integers with a divisor in a given interval},
     journal = {Annals of mathematics},
     pages = {367--433},
     publisher = {mathdoc},
     volume = {168},
     number = {2},
     year = {2008},
     doi = {10.4007/annals.2008.168.367},
     mrnumber = {2434882},
     zbl = {1181.11058},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.168.367/}
}
TY  - JOUR
AU  - Kevin Ford
TI  - The distribution of integers with a divisor in a given interval
JO  - Annals of mathematics
PY  - 2008
SP  - 367
EP  - 433
VL  - 168
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.168.367/
DO  - 10.4007/annals.2008.168.367
LA  - en
ID  - 10_4007_annals_2008_168_367
ER  - 
%0 Journal Article
%A Kevin Ford
%T The distribution of integers with a divisor in a given interval
%J Annals of mathematics
%D 2008
%P 367-433
%V 168
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.168.367/
%R 10.4007/annals.2008.168.367
%G en
%F 10_4007_annals_2008_168_367
Kevin Ford. The distribution of integers with a divisor in a given interval. Annals of mathematics, Tome 168 (2008) no. 2, pp. 367-433. doi : 10.4007/annals.2008.168.367. http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.168.367/

Cité par Sources :