Ramification theory for varieties over a perfect field
Annals of mathematics, Tome 168 (2008) no. 1, pp. 33-96.

Voir la notice de l'article provenant de la source Annals of Mathematics website

For an $\ell$-adic sheaf on a variety of arbitrary dimension over a perfect field, we define the Swan class measuring the wild ramification as a $0$-cycle class supported on the ramification locus. We prove a Lefschetz trace formula for open varieties and a generalization of the Grothendieck-Ogg-Shararevich formula using the Swan class.
DOI : 10.4007/annals.2008.168.33

Kazuya Kato 1 ; Takeshi Saito 2

1 Department of Mathematics<br/>Kyoto University<br/>606-8502 Kyoto <br/>Japan
2 Department of Mathematical Sciences<br/>University of Tokyo<br/>153-8914 Tokyo <br/>Japan
@article{10_4007_annals_2008_168_33,
     author = {Kazuya Kato and Takeshi Saito},
     title = {Ramification theory for varieties over a perfect field},
     journal = {Annals of mathematics},
     pages = {33--96},
     publisher = {mathdoc},
     volume = {168},
     number = {1},
     year = {2008},
     doi = {10.4007/annals.2008.168.33},
     mrnumber = {2415398},
     zbl = {1172.14011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.168.33/}
}
TY  - JOUR
AU  - Kazuya Kato
AU  - Takeshi Saito
TI  - Ramification theory for varieties over a perfect field
JO  - Annals of mathematics
PY  - 2008
SP  - 33
EP  - 96
VL  - 168
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.168.33/
DO  - 10.4007/annals.2008.168.33
LA  - en
ID  - 10_4007_annals_2008_168_33
ER  - 
%0 Journal Article
%A Kazuya Kato
%A Takeshi Saito
%T Ramification theory for varieties over a perfect field
%J Annals of mathematics
%D 2008
%P 33-96
%V 168
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.168.33/
%R 10.4007/annals.2008.168.33
%G en
%F 10_4007_annals_2008_168_33
Kazuya Kato; Takeshi Saito. Ramification theory for varieties over a perfect field. Annals of mathematics, Tome 168 (2008) no. 1, pp. 33-96. doi : 10.4007/annals.2008.168.33. http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.168.33/

Cité par Sources :