The derivation problem for group algebras
Annals of mathematics, Tome 168 (2008) no. 1, pp. 221-246.

Voir la notice de l'article provenant de la source Annals of Mathematics website

If $G$ is a locally compact group, then for each derivation $D$ from $L^1(G)$ into $L^1(G)$ there is a bounded measure $\mu\in M(G)$ with $D(a)=a*\mu-\mu*a$ for $a\in L^1(G)$ (“derivation problem” of B. E. Johnson).
DOI : 10.4007/annals.2008.168.221

Viktor Losert 1

1 Institut für Mathematik<br/>Universität Wien<br/>1090 Wien<br/>Austria
@article{10_4007_annals_2008_168_221,
     author = {Viktor Losert},
     title = {The derivation problem for group algebras},
     journal = {Annals of mathematics},
     pages = {221--246},
     publisher = {mathdoc},
     volume = {168},
     number = {1},
     year = {2008},
     doi = {10.4007/annals.2008.168.221},
     mrnumber = {2415402},
     zbl = {1171.43004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.168.221/}
}
TY  - JOUR
AU  - Viktor Losert
TI  - The derivation problem for group algebras
JO  - Annals of mathematics
PY  - 2008
SP  - 221
EP  - 246
VL  - 168
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.168.221/
DO  - 10.4007/annals.2008.168.221
LA  - en
ID  - 10_4007_annals_2008_168_221
ER  - 
%0 Journal Article
%A Viktor Losert
%T The derivation problem for group algebras
%J Annals of mathematics
%D 2008
%P 221-246
%V 168
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.168.221/
%R 10.4007/annals.2008.168.221
%G en
%F 10_4007_annals_2008_168_221
Viktor Losert. The derivation problem for group algebras. Annals of mathematics, Tome 168 (2008) no. 1, pp. 221-246. doi : 10.4007/annals.2008.168.221. http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.168.221/

Cité par Sources :