A quantitative version of the idempotent theorem in harmonic analysis
Annals of mathematics, Tome 168 (2008) no. 3, pp. 1025-1054.

Voir la notice de l'article provenant de la source Annals of Mathematics website

Suppose that $G$ is a locally compact abelian group, and write $\mathbf{M}(G)$ for the algebra of bounded, regular, complex-valued measures under convolution. A measure $\mu \in \mathbf{M}(G)$ is said to be idempotent if $\mu \ast \mu = \mu$, or alternatively if $\widehat{\mu}$ takes only the values $0$ and $1$. The Cohen-Helson-Rudin idempotent theorem states that a measure $\mu$ is idempotent if and only if the set $\{\gamma \in \widehat{G} : \widehat{\mu}(\gamma) = 1\}$ belongs to the coset ring of $\widehat{G}$, that is to say we may write \[ \widehat{\mu} = \sum_{j = 1}^L \pm 1_{\gamma_j + \Gamma_j}\] where the $\Gamma_j$ are open subgroups of $\widehat{G}$.
DOI : 10.4007/annals.2008.168.1025

Ben Green 1 ; Tom Sanders 1

1 Center for Mathematical Sciences<br/>University of Cambridge<br/>Cambridge CB3 0WA<br/>United Kingdom
@article{10_4007_annals_2008_168_1025,
     author = {Ben Green and Tom Sanders},
     title = {A quantitative version of the idempotent theorem in harmonic analysis},
     journal = {Annals of mathematics},
     pages = {1025--1054},
     publisher = {mathdoc},
     volume = {168},
     number = {3},
     year = {2008},
     doi = {10.4007/annals.2008.168.1025},
     mrnumber = {2456890},
     zbl = {1170.43003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.168.1025/}
}
TY  - JOUR
AU  - Ben Green
AU  - Tom Sanders
TI  - A quantitative version of the idempotent theorem in harmonic analysis
JO  - Annals of mathematics
PY  - 2008
SP  - 1025
EP  - 1054
VL  - 168
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.168.1025/
DO  - 10.4007/annals.2008.168.1025
LA  - en
ID  - 10_4007_annals_2008_168_1025
ER  - 
%0 Journal Article
%A Ben Green
%A Tom Sanders
%T A quantitative version of the idempotent theorem in harmonic analysis
%J Annals of mathematics
%D 2008
%P 1025-1054
%V 168
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.168.1025/
%R 10.4007/annals.2008.168.1025
%G en
%F 10_4007_annals_2008_168_1025
Ben Green; Tom Sanders. A quantitative version of the idempotent theorem in harmonic analysis. Annals of mathematics, Tome 168 (2008) no. 3, pp. 1025-1054. doi : 10.4007/annals.2008.168.1025. http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.168.1025/

Cité par Sources :