On the classification of isoparametric hypersurfaces with four distinct curvatures in spheres
Annals of mathematics, Tome 168 (2008) no. 3, pp. 1011-1024.

Voir la notice de l'article provenant de la source Annals of Mathematics website

In this paper we give a new proof for the classification result in [3]. We show that isoparametric hypersurfaces with four distinct principal curvatures in spheres are of Clifford type provided that the multiplicities $m_1, m_2$ of the principal curvatures satisfy $m_2 \geq 2m_1 – 1$. This inequality is satisfied for all but five possible pairs $(m_1, m_2)$ with $m_1 \leq m_2$. Our proof implies that for $(m_1, m_2) \neq (1,1)$ the Clifford system may be chosen in such a way that the associated quadratic forms vanish on the higher-dimensional of the two focal manifolds. For the remaining five possible pairs $(m_1, m_2)$ with $m_1 \leq m_2$ (see [13], [1], and [15]) this stronger form of our result is incorrect: for the three pairs $(3,4)$, $(6,9)$, and $(7,8)$ there are examples of Clifford type such that the associated quadratic forms necessarily vanish on the lower-dimensional of the two focal manifolds, and for the two pairs $(2,2)$ and $(4,5)$ there exist homogeneous examples that are not of Clifford type; cf. [5, 4.3, 4.4].
DOI : 10.4007/annals.2008.168.1011

Stefan Immervoll 1

1 Mathematisches Institut<br/>Universität Tübingen<br/>72076 Tübingen<br/>Germany
@article{10_4007_annals_2008_168_1011,
     author = {Stefan Immervoll},
     title = {On the classification of isoparametric hypersurfaces with four distinct curvatures in spheres},
     journal = {Annals of mathematics},
     pages = {1011--1024},
     publisher = {mathdoc},
     volume = {168},
     number = {3},
     year = {2008},
     doi = {10.4007/annals.2008.168.1011},
     mrnumber = {2456889},
     zbl = {1176.53057},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.168.1011/}
}
TY  - JOUR
AU  - Stefan Immervoll
TI  - On the classification of isoparametric hypersurfaces with four distinct curvatures in spheres
JO  - Annals of mathematics
PY  - 2008
SP  - 1011
EP  - 1024
VL  - 168
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.168.1011/
DO  - 10.4007/annals.2008.168.1011
LA  - en
ID  - 10_4007_annals_2008_168_1011
ER  - 
%0 Journal Article
%A Stefan Immervoll
%T On the classification of isoparametric hypersurfaces with four distinct curvatures in spheres
%J Annals of mathematics
%D 2008
%P 1011-1024
%V 168
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.168.1011/
%R 10.4007/annals.2008.168.1011
%G en
%F 10_4007_annals_2008_168_1011
Stefan Immervoll. On the classification of isoparametric hypersurfaces with four distinct curvatures in spheres. Annals of mathematics, Tome 168 (2008) no. 3, pp. 1011-1024. doi : 10.4007/annals.2008.168.1011. http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.168.1011/

Cité par Sources :