The kissing number in four dimensions
Annals of mathematics, Tome 168 (2008) no. 1, pp. 1-32.

Voir la notice de l'article provenant de la source Annals of Mathematics website

The kissing number problem asks for the maximal number $k(n)$ of equal size nonoverlapping spheres in $n$-dimensional space that can touch another sphere of the same size. This problem in dimension three was the subject of a famous discussion between Isaac Newton and David Gregory in 1694. In three dimensions the problem was finally solved only in 1953 by Schütte and van der Waerden.
DOI : 10.4007/annals.2008.168.1

Oleg R. Musin 1

1 Department of Mathematics<br/>University of Texas<br/>Brownsville, Texas 78520<br/>United States
@article{10_4007_annals_2008_168_1,
     author = {Oleg R. Musin},
     title = {The kissing number in four dimensions},
     journal = {Annals of mathematics},
     pages = {1--32},
     publisher = {mathdoc},
     volume = {168},
     number = {1},
     year = {2008},
     doi = {10.4007/annals.2008.168.1},
     mrnumber = {2415397},
     zbl = {1169.52008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.168.1/}
}
TY  - JOUR
AU  - Oleg R. Musin
TI  - The kissing number in four dimensions
JO  - Annals of mathematics
PY  - 2008
SP  - 1
EP  - 32
VL  - 168
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.168.1/
DO  - 10.4007/annals.2008.168.1
LA  - en
ID  - 10_4007_annals_2008_168_1
ER  - 
%0 Journal Article
%A Oleg R. Musin
%T The kissing number in four dimensions
%J Annals of mathematics
%D 2008
%P 1-32
%V 168
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.168.1/
%R 10.4007/annals.2008.168.1
%G en
%F 10_4007_annals_2008_168_1
Oleg R. Musin. The kissing number in four dimensions. Annals of mathematics, Tome 168 (2008) no. 1, pp. 1-32. doi : 10.4007/annals.2008.168.1. http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.168.1/

Cité par Sources :