The topological classification of minimal surfaces in $\mathbb R^3$
Annals of mathematics, Tome 167 (2008) no. 3, pp. 681-700.

Voir la notice de l'article provenant de la source Annals of Mathematics website

We give a complete topological classification of properly embedded minimal surfaces in Euclidian three-space.
DOI : 10.4007/annals.2008.167.681

Charles Frohman 1 ; William H. Meeks III 2

1 Department of Mathematics, University of Iowa, Iowa City, IA 52242, United States
2 Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003, United States
@article{10_4007_annals_2008_167_681,
     author = {Charles Frohman and William H. Meeks III},
     title = {The topological classification of minimal surfaces in $\mathbb R^3$},
     journal = {Annals of mathematics},
     pages = {681--700},
     publisher = {mathdoc},
     volume = {167},
     number = {3},
     year = {2008},
     doi = {10.4007/annals.2008.167.681},
     mrnumber = {2415385},
     zbl = {1168.49038},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.167.681/}
}
TY  - JOUR
AU  - Charles Frohman
AU  - William H. Meeks III
TI  - The topological classification of minimal surfaces in $\mathbb R^3$
JO  - Annals of mathematics
PY  - 2008
SP  - 681
EP  - 700
VL  - 167
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.167.681/
DO  - 10.4007/annals.2008.167.681
LA  - en
ID  - 10_4007_annals_2008_167_681
ER  - 
%0 Journal Article
%A Charles Frohman
%A William H. Meeks III
%T The topological classification of minimal surfaces in $\mathbb R^3$
%J Annals of mathematics
%D 2008
%P 681-700
%V 167
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.167.681/
%R 10.4007/annals.2008.167.681
%G en
%F 10_4007_annals_2008_167_681
Charles Frohman; William H. Meeks III. The topological classification of minimal surfaces in $\mathbb R^3$. Annals of mathematics, Tome 167 (2008) no. 3, pp. 681-700. doi : 10.4007/annals.2008.167.681. http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.167.681/

Cité par Sources :